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Abstract

A recent development in the study the AdS/CFT correspondence is that of ‘bit threads,’
which describe the physical distribution of entanglement in CFTs while simultaneously com-
puting entanglement entropies. Equivalently, we may work with a set of divergenceless vector
�elds with a collective norm bound called a ‘Multiow.’ Via analytic ansatz and numerical
computation, we demonstrate that the multiow formalism fails to compute entanglement en-
tropies for crossing boundary regions. We also present two proofs for the assertion that in the
absence of crossing boundary regions there exists a multiow which computes the entropy of
entanglement for an arbitrary number and arrangement of boundary regions.
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1 Introduction

The apparent emergence of duality between Conformal Field Theories (CFTs) and Anti-de Sitter
(AdS) Space of one higher dimension is a topic of great interest in high energy physics. A CFT

1



is a quantum �eld theory which exhibits conformal symmetry and AdS is a maximally symmetric
space-time with a constant negative curvature. The equivalence between these systems is referred
to as ‘holographic’ since the AdS is of one higher dimension than the CFT. This allows us to think
of the CFT as existing on the boundary of the holographic AdS, which we refer to as the bulk. This
duality, referred to as the AdS/CFT Correspondence, gives theorists a unique framework in which
to explore a number of open questions in a variety of �elds, from condensed matter to quantum
gravity.

The work presented here concerns itself primarily with the study of information and entan-
glement on states of Conformal Field Theories. Our main interest is in developing methods of
calculating the entropy of entanglement between di�erent spacial regions of CFTs, giving us a
means of probing the information structure of holographic states and determining some shared
properties of all holographic states. As the study of the AdS/CFT Correspondence has progressed,
the Ryu-Takayanagi (RT) formula has become widely accepted as a means of calculating the en-
tanglement entropy. The RT formula relates the entropy of a region of the boundary CFT to the
area of the minimal surface homologous to this region in the bulk AdS space. The RT formula,
while useful, gives us a very limited intuitive sense of the physical structure of the underlying state.

In order to increase our understanding of the information structure of holographic states, con-
sider the following picture:

Threads with a certain cross-sectional area are placed onto the some region A of the boundary
CFT and are allowed to run through the bulk and onto some point of the boundary within the
complement of A. In this picture, the minimal surface referenced by the RT formula above acts as
a bottle-neck for such threads and thus the maximum number of such threads which can connect
A to its compliment also gives us the entropy by revealing the area the minimal bulk surface
homologous to A in an indirect fashion. Each individual thread can be thought of as entangling
two separate points on the CFT and each carries an entropy equivalent to that of a maximally
entangled Bell Pair, and thus we refer to these threads as bit threads.

The equivalence between the RT formula and this bit thread picture is realized as a continuum
version of the max-ow min-cut theorem from graph theory by using techniques from the theory
of convex optimization. In particular, the strong duality of convex optimization problems allows
us to equate the RT formula to a new problem in which we try to maximize the number of bit
threads connecting a region to the rest of the boundary CFT.

While the bit threads serve as an excellent tool to inform our intuition, they are not partic-
ularly useful for doing calculations. In order to �nd some middle ground between the physically
informative and the computationally useful, we can think of bit threads as microscopic (and in fact
Planck-scale) objects and work in a course grained picture where we work with a vector �eld with
certain properties referred to a ow. In order to maintain the physical properties of the microscopic
bit threads, these �elds must be divergenceless and have a bounded norm. The condition that the
�eld is divergenceless says that every thread must begin and end on the boundary CFT and no
thread can spontaneously appear or disappear in the bulk. The bound on the magnitude of the
�eld is e�ectively a statement that the threads have spacial extent and thus cannot occupy more
volume than is available to them. This ow can be interpreted as an information ux density, the
�eld lines of which are followed by the bit threads. This lets us go back and forth freely between
the thread and ow based picture.

The ow �eld is easier to work with than the threads for the means of computation, and since
a given �eld con�guration is easily converted into a thread con�guration ows can also serve as
a visual aid for understanding the spacial distribution of entanglement. A ow �eld, however,
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can only compute the entropy of a single region or at most, regions nested inside of one another.
In order to �nd the entropies of more complicated arrangements of boundary regions we need
something else. Once again, graph theory provides the inspiration we need.

On graphs, there is a class of problems which are referred to as ‘multi-commodity ow prob-
lems’ or ‘multiow problems’ for short. These problems are a fairly straight-forward extension of
single commodity ow problems (which were the inspiration for ows in the continuous system).
Essentially, a multi-commodity ow is just a number of single commodity ows on the same graph
at the same time. Thus we can de�ne a continuum mutliow as a set of vector �elds which are
divergenceless and obey a bound on the sum of their magnitudes. Each �eld in a multiow trans-
lates to a con�guration of threads connecting a pair of regions, and together, the multiow as a
whole represents threads connecting any number of regions to one another.

The multiow formalism has proven useful as a computational tool, and we would like to see
just how useful it could be. Its derivation from its counterpart on graphs leads us to believe that
many results for the graph based multiows should be true in the continuum. In particular, results
which tell us the computational limits of multiows on graphs may apply in the continuum. If
these same limits apply for the continuum multiows, we can use graph based problems to model
those in the continuum AdS/CFT. This would allow us to apply techniques and algorithms already
formulated for the RT prescription to multiows, giving us the ability to generate and prove a list
of inequalities obeyed by the entropies of holographic states for any number of regions of the CFT
[1]. We could then use the multiow picture to analyze the physical meaning of these inequalities
and probe the information structure of holographic states. This goal is a ways away, and �rst we
must check to see if this is possible by �nding the computational limits on multiows. This is the
goal of the work presented here.

To begin, we provide a more technical introduction to the concepts introduced here in the next
section and elaborate on some of the connections between entanglement entropies and graph theory.
In section 3 we go onto generalize previous results pertaining to multiows before analytically and
numerically apporaching a toy problem in section 4 which will illustrate that multiows cannot
be used to calculate the entropy of crossing regions. This will represent the point at which the
analogy between our constructs in AdS/CFT will diverge from their analogs on graphs.

2 Background

2.1 AdS/CFT and Holographic Entanglement Entropy

2.1.1 AdS/CFT

The AdS/CFT Correspondence is as powerful as it is because it tells us that two systems, which
on the surface appear to be very di�erent, are equivalent. This fact allows us to take many di�cult
calculations from one system and perform them much more easily in its dual description. We will
be performing a very complicated CFT calculation with relative ease in the dual AdS.

Recall that AdS or Anti-de Sitter space-times are maximally symmetric space-times with a
constant negative curvature. This means that the length element is approaches zero at in�nity,
which will cause problems. In order to get around this, we impose a cuto� to the AdS which is
associated with the length-scale down to which we trust the physics in our CFT. Doing this gives us
a bounded manifold, which we denote M. Another important note about the AdS in ‘AdS/CFT’
is that it need not be simple, empty Anti de-Sitter space. Di�erent states of the boundary CFT
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have di�erent holographic duals which are asymptotically AdS. A holographic state may have an
asymptotically AdS dual that contains matter, energy, black holes, etc.

On the other side of the equation, we have states of quantum �eld theories with conformal
symmetries. These aforementioned ‘holographic states’ are not just any random state of the �eld
theory. Rather, we restrict ourselves to working with these special states that have well de�ned
asymptotically AdS dual space-times associated with them.

Our goal will be to study the structure of these holographic states in order to learn what features
of these states are important for holography. Examining entanglement in these states is one way
we can do this. This is because holographic states all obey certain inequalities which can give
us insight into their structure and hint towards how asymptotically Anti-de Sitter Spaces emerge
from them. We will discuss these inequalities later in this section.

2.1.2 Entanglement and Entropy

Entanglement is a fundamental feature of quantum mechanics. This phenomenon is one of the few
ways in which physicists may encode information in quantum systems without that information
becoming lost to the uncertainty built into quantum mechanics.

The AdS/CFT Correspondence gives us the ability to study the structure of entanglement
within quantum systems with in�nite degrees of freedom. Studying entanglement will lead to
a better understanding of how to manipulate information in quantum systems, as well as how
entanglement may be connected to the emergence of gravitational systems.

Holographic states, like all quantum states with many degrees of freedom, can be described
entirely by the operator � which is often known as the density matrix operator. In order to
examine the entanglement which is internal to this state, we must �rst divide it into parts. The
simplest way of doing this is to consider a region A of the conformal �eld theory and ask how
the state on only that region is entangled with the rest of the �eld theory Ac. The state on A is
described by the reduced density matrix, given by:

�A = TrAc [�] (1)

where TrAc represents the partial trace over the degrees of freedom in Ac.
The entanglement across a partition of the state can be quanti�ed by an entropy, which can be

used to tell us (practically speaking) how much information is stored in the entanglement between
the bipartite regions. This entanglement entropy is given by the von Neumann entropy, which for
a region A is

S(A) := �Tr[�Aln(�A)]: (2)

From the de�nition above, one can de�ne a number of useful quantities by taking the sums and
di�erences of entropies of di�erent regions in a multipartite system. These more directly reect
the amount of information which is, or is not shared between regions of the boundary CFT.

As of yet, there has been no mention of the space-time of one higher dimension beyond the
conformal �eld theory. The most relevant connection between from a CFT to it’s holographic
dual is given by the RT formula, which gives a method for �nding the von Neumann entropy via
geometric calculation in an asymptotically Anti-de Sitter space. The RT formula equates the von
Veumann entropy of a region A with the area of the minimal surface in the bulk that is homologous
to A. In mathematics, this stated as:

4



Figure 1: A visual illustration of the RT formula for CFT2+1=AdS3+1. The entropy
of a region A of the CFT is equivalent to the area of the minimal surface m(A) in the
bulk AdS such that the boundary of the surface is the same as that of the region A

S(A) =
1

4GN
Area(m(A)) (3)

where m(A) denotes this minimal surface.
There is an alternative version of the RT formula which is described in terms of a vector �eld in

the bulk. Such a vector �eld ~v is referred to as a maximal ow and obeys the following constraints:

~r � ~v = 0 (4)

j~vj � 1

for the reasons outlined in the introduction. We refer to a ow as maximal (for a region A) when:Z
A

p
hn�v

� = S(A) (5)

where h is the determinant of the induced metric on the boundary A and ~n is the unit vector
normal to A. The reason that these are called maximal ows will be described later in this section.

One subtlety of this formalism is that the bit threads are undirected while the ow �eld is.
By convention we will always have a ow going out of the region it is associated with and into its
compliment.

Single ows present an interesting conceptual alternative to the RT formula although they
do not tell us anything more than the RT formula when it comes to the entanglement structure
of holographic states. In order to learn more about this particular topic, we need to know how
threads must be distributed across multiple regions. The ow formalism is insu�cient to do this
calculation, so we can give it an upgrade and de�ne what we call a multiow f~vig, which is simply
a collection of individual ow �elds ~vi which together obey a collective norm boundX

i

j~vij � 1 (6)

If a multiow is maximal for some set of boundary regions Ai, then we de�ne the ow going
from Ai to Aj as ~vij , then the multiow is given by f~vijg. Notice that some additional constraints
follow immediately from this setup:

~vij = �~vji (7)
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~vij � n̂k = 0 8k 6= i; j

where n̂k is the normal vector to the region Ak. Mutliows have the potential to let us map out
the entanglement structure of holographic states, which was not previously possible with the RT
formula or the single ow formalism. For this reason, the multiow structure is of great interest
and so it is the subject of the work performed herein.

2.1.3 Entropy Inequalities and the Holographic Entropy Cone

The RT formula in its various forms allows us to probe the entanglement structure of holographic
states (since it is necessarily holographic calculation). By examining the entropy of multiple regions
of a CFT in a general holographic state, we can determine some features of the entanglement
structure that make it holographic. While a few facts are immediately obvious from the de�nition
of the entanglement entropy in terms of CFT calculations, many more conditions on holographic
states emerge once the RT formula comes into play. Two prominent entropy inequalities are

S(AB) + S(BC) � S(B) + S(ABC) (8)

S(AB) + S(BC) + S(AC) � S(A) + S(B) + S(C) + S(ABC)

Where AB;BC;ABC, etc. are the unions of the respective regions A;B;C, etc. These inequal-
ities are known as strong subadditivity (SSA) and the monogamy of mutual information (MMI)
respectively.

If we consider n regions of the CFT, we can construct a vector in R2n�1, the elements of which
are the entropies for each region and all possible combinations of them. As discussed in [1] in this
space, referred to as the holographic entropy cone for n regions. The extremal rays de�ning the
edges of the holographic entropy cone are those entropy vectors for which some entropy inequality
is saturated. It turns out that for n � 4 SSA, MMI, and other inequalities which can derived from
the two taken together, completely de�ne the holographic entropy cone. However, for n =� 5 there
are more inequalities which constrain holographic states. Using the minimal surface prescription,
a method has been constructed for �nding and proving such higher-party entropy inequalities [1].
For this to be accomplished, it is necessary to construct a graph model of holographic entanglement
entropies. An example of a more complicated entropy inequalities is

S(ABC) + S(ABD) + S(ABE) + S(ACD) + S(ACE) + S(BC) + S(DE)

� S(AB) + S(ABCD) + S(ABCE) + S(AC) + S(ADE) + S(B) + S(C) + S(D) + S(E) (9)

which is one of the entropy inequalities for �ve regions which is independent of SSA and MMI.
The typical procedure for proving entropy inequalities using bit threads, is to �nd a maximal

ow or multiow for all regions that appear on the right hand side, and then show that the
inequality follows as a consequence of the thread con�guration. We will see that this is not a
trivial task for inequalities of this form because the right hand side contains crossing regions (for
example AC and ADE). If we want to use the mutliow formalism to prove and analyze these
inequalities, this must be addressed.

2.2 The Max-Flow Min-Cut Theorems

The ow and multiow formalism is constructed formally by moving a theorem for graph based
multiows into the continuum. This theorem is the well known Max-Flow Min-Cut Theorem
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Figure 2: a.) An example graph on which we may de�ne a commodity ow problem.
This graph is made up of vertices connected by edges, some subset of which are
declared to be the ‘terminals’ of the graph which will act as sources or sinks for the
commodity ow. b.) Example of a commodity ow program where the commodity
is sent from source terminals through the graph to the remaining terminals. The
Max-Flow Min-Cut Theorem states that the maximum ow that can be sent from
some source terminals is equal to the minimum number of edges which are cut by a
partitioning of the vertices such that the source terminals are separated from the rest
in the partition.

(MFMC). A brief visual explanation of the graph based MFMC Theorem is presented in Figure 2.
The graph presented in the �gure has all edges with a capacity of 1, however in general one can
weight edges di�erently such that more or less ow can pass through one edge than others. We
call these weights the capacity of an edge. The only thing this changes on the cut side is that the
minimal cut is now computed by the sum of the capacities of the edges cut by the partition. It
should be noted that any commodity ow must be conserved at every vertex and no commodity
ow can exceed the capacity of the edge it passes through.

Flows are a continuum analog of the single commodity ow on graphs, and likewise multiows
are a continuum analog of multi-commodity ows on graphs. Instead of conserving ow at vertices,
we now demand that all ow �elds are divergenceless in the bulk. Similarly, instead of forcing
commodity ows to respect the capacity of the edges they traverse, we now demand that the
magnitude of ow �elds do not exceed some bound.

The equivalence between maximizing the ux of a vector �eld across a source region of a
continuous boundary and minimizing the area of a surface homologous to the source region is
referred to as the continuum MFMC Theorem and is proven using the strong duality between
convex programs.A convex program is the statement of an optimization problem of a certain form.
The components of a convex program are:

1. fxg: Some variables de�ning a convex set over which the optimization will occur

2. f0(fxg): A convex or concave function which is referred to as the objective of the program.
This function will be minimized (or maximized in the case of a concave function) subject to
some constraints.
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Figure 3: An illustration of the continuum Max-Flow Min-Cut Theorem. In place
of source terminals we now have a source region (or set of source regions). The
commodity ow is replaced by a norm-bounded, divergencless vector �eld and the
minimal cut is replaced by the minimal surface homologous to the source region

3. fi(fxg): A set of convex inequality constraints of the form fi(fxg) � 0.

4. hi(fxg): A set of a�ne equality constraints of the form hi(fxg) = 0.
Taken with the inequality constraints, these de�ne a set of feasible points within the larger
space spanned by the variables of the program. The solution to the convex program will be
at some point within the set of feasible points.

One important feature of convex programs is that if the set of feasible points is non-empty,
the program can be dualized by removing the constraints on the program and adding back those
constraints, multiplied by Lagrange multipliers, to the program’s objective. Once the unconstrained
optimization is performed over the original variables, we are left with the objective of a new dual
program. This is to be optimized with respect to the Lagrange multipliers associated with the
original constraints. This new dual program will be a minimization problem if the original, or
primal, program was a maximization problem. The crucial fact used in proving the equivalence of
the ow prescription to the RT formula is that the optimal objective value of these two problems
will be the same.

Based on purely geometric arguments, it becomes clear that with ows such that j~vj � 1,Z
A

v � S(A) (10)

where
R
A
v � S(A) is used as a short-hand for

R
A

p
hn�v

�. Now we can write our ow problem as
a concave program:

Primal: Maximize

Z
A

v with respect to ~v, subject to ~r � ~v = 0 and j~vj � 1: (11)

By dualizing this program, we obtain a minimization problem which has a solution bounded
below by the entropy of A. Thus the entropy will be the extremal value of both the primal objective
and the dual objective:
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Figure 4: For the three sets A;B;C depicted. A and B do not cross because B is
entirely nested within A. B and C do not cross since their intersection is empty. A
and C do cross since their intersection is non-empty and neither is a subset of the
other.

Max

Z
A

v = S(A) (12)

Furthermore, it will turn out that the con�guration of variables which extremizes the dual program
will return a delta function along the minimal surface homologous to the source region [2].

By extension, the continuum MFMC theorem can be applied to multiows by a similar proce-
dure. Only in this case, we will include the ux of multiple ows through multiple regions in our
primal objective.

2.3 Further Connections to Graphs

Graph theory provides the framework for developing the multiow formalism, but it also contributes
in other ways to the study of entanglement entropy in AdS/CFT. One interesting and relevant
example of this is the development of a graph model for holographic entanglement entropies which
contains all of the relevant information about the minimal surfaces of source regions and their
unions. One reason for this development is so it can be used for an algorithm to �nd and prove
entropy inequalities for multipartite systems, beyond SSA and MMI [1]. Due to their strong
connection to graph based problem, it is reasonable to ask if ows and mutliows can be modeled
in a similar fashion, and if such machinery can be used in an analogous way to study entropy
inequalities.

The continuum and discrete MFMC theorems lead us to believe that the graphs which model
cuts and ows should be identical. Now we can turn to known results from graph theory to test
how well the multiow formalism holds up compared to its discrete counterpart.

The particular graph theoretic result is known as the Locking Theorem. This tells us if a
maximal multi-commodity ow exists given a particular choice of subsets of terminals which we
want to maximize the ows from. In particular, the Locking Theorem puts a limit on how sets of
source terminals may cross. The condition for two regions A and B to be crossing is that none of
the following sets are empty:
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Figure 5: Example of converting a set of source regions with their minimal surfaces
into a graph model. The boundary along with the minimal surfaces of source regions
divide the bulk into disjoint volumes, each of which is assigned a vertex in the graph
model. Each bulk cell is connected to adjacent ones in the graph models via edges
which are weighted by the area of their shared boundary (in the example here this is
just the area of the minimal surface dividing them).

A \B; A=B; B=A; (A [B)c: (13)

For simplicity we will usually omit the last condition, as it is meant to exclude cases which do
not concern us. The Locking Theorem is stated (in simpli�ed language) as follows;

The Locking Theorem: For any family of 3-cross free subsets of terminals, there exists
a multi-commodity ow con�guration which simultaneously maximizes the ow from
each subset.

For a more in depth treatment of the Locking Theorem, see [3]. In order for the idea of modeling
continuum multiows as discrete multi-commodity ows to work, our continuum construct must
also satisfy the Locking Theorem. We will soon see, however, that this is not the case. Before we
examine the failure of continuum multiows to satisfy the Locking Theorem, we should �rst check
that it does not fail in cases which are regarded as trivial by the discrete Locking Theorem, i.e. in
the case of non-crossing source regions.

3 Multiflows for Non-Crossing Regions: The Weak Contin-
uum Locking Theorem

As of now, it has been proven that there exists a multiow which is maximal for:

1. Any number of disjoint source regions

2. Any number of disjoint source regions and one additional composite region made up of some
union of the other disjoint elementary regions [4].
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The Locking Theorem states that this should still be true for any arbitrary choice of non-crossing
regions or for regions which have crossings but are still 3-cross free. Before we consider whether or
not multiows can reproduce entropies for crossing regions, we must �rst prove to make sure that
this can be done for an arbitrary number of disjoint and nested regions.

In this section, we present two di�erent proofs which show that this is the case. We refer to
this result as the Weak Continuum Locking Theorem and it can be thought of as a generalization
of the Theorems proven in [4] pertaining to multiows.

3.1 Proof by Dualization

The �rst proof is accomplished by dualizing the convex program of maximizing a multiow over
arbitrary non-crossing regions. By utilizing equation (10), it is su�cient to show that the objective
of the dual program is bounded below by the sum of the entropies of the source regions. We begin
by partitioning the boundary into N disjoint regions and labeling these regions Ai. Now de�ne
some number of regions fB�g� such that B� � fA1; A2; ::: ; ANg subject to the constraint that at
least one of the following conditions holds;

B� \B� = ;; B� � B� ; B� � B� 8�; � (14)

which is the statement that these regions are non-crossing. We will refer to these regions as
composite regions. We now construct a convex program which will maximize the ux of some
multiow over each composite region.

The statement of our program is

Primal Program: Maximize
X
�

X
Ai2B�

X
Aj =2B�

Z
Ai

vij ; (15)

with respect to f~vijg, subject to:
~vij + ~vji = 0; (16)

~r � ~vij = 0; (17)X
i<j

j~vij j � 1: (18)

If we de�ne nij to be the number of sets B� which contain Ai and not Aj (nij := #(�jAi 2
B�; Aj 62 B�)) and make use of constraints (5) and (6), we can rewrite the object of the primal
program as: X

i<j

 Z
Ai

nijvij �
Z
Aj

njivij

!
: (19)

We can write a Lagrangian for our program by not explicitly enforcing constraints (17) and (18)
and instead, add them to our objective multiplied by Lagrange multipliers ( ij and �). The
Lagrangian is

X
i<j

 Z
Ai

nijvij �
Z
Aj

njivij

!
+

Z
M

h
�+

X
i<j

�
 ij ~r � ~vij � �jvij j

�i
: (20)
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If we perform integration by parts, and then demand that the maximum of the Lagrangian with
respect to the multiow be �nite, we obtain our dual program:

Dual Program: Minimize

Z
M

�; (21)

with respect to �; f ijg, subject to:

� � j~r ij j; (22)

 ij jAi = �nij  ij jAj = nji: (23)

Notice that (22) and (23) taken together imply that for any path c between Ai and AjZ
c

� ds � Nij (24)

where Nij := nij + nji. We then de�ne Ni� := #(�jAi 2 B� � B�), which is the number of
B� which contain Ai and are also contained in B� (and note that B� is not counted in Ni�). In
general, we know that

Ni� +Nj� � Nij : (25)

By this de�nition, it follows that(
Ni� � nij � 1 Ai 2 B�; Aj 62 B�
Ni� = 0 Ai 62 B�

(26)

where the �rst inequality relies on the fact that B� is not counted in Ni�.
We now de�ne functions �i(x):

�i(x) := inf
c fromAi to x

Z
c

� ds: (27)

This implies that
�i(x) + �j(x) � Nij : (28)

Now we de�ne

��(x) := min
Ai2B�

(�i(x)�Ni�); (29)

and we denote the level sets of these functions as

~R�(p) :=
�
x 2M j��(x) = p

	
(30)

for some x 2 Ai 2 B�, �i(x) = 0 and Ni� � 0. Thus ��(x) � 0 by (29). Now consider a di�erent
x 2 Aj 62 B�, if we let Ai 2 B� be the minimizer of (29), we know that �j(x) = 0 and thus by
(28) and (26),

��(x) = �i(x)�Ni� � Nij �Ni� � 1 + nji � 1: (31)

Thus, the level sets of �� between 0 and 1 must be homologous to B�. We then de�ne regions
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R� :=
�
x 2M j0 < ��(x) < 1

	
: (32)

If all composite regions are non-crossing, then we should expect that

R� \R� = ; (33)

if � 6= �. In order to show this, we must consider two cases: one in which B� \ B� = ;, and the
other where B� � B� .

1. In the �rst case, let B� \ B� = ;. We will also let Ai 2 B� such that ��(x) = �i(x) �Ni�
and Aj 2 B� such that ��(x) = �j(x)�Nj� for some x. If we choose x to be some point in
~R� we know that by de�nition

��(x) < 1: (34)

For this case, we also know that

Ni� +Nj� � Nij � 2 (35)

by equation (26). We now note that this, along with (28) and (29), gives

��(x) + ��(x) = �i(x) + �j(x)� (Ni� +Nj�) � 2 (36)

and that combining this with (34) implies that

��(x) > 1 =) R� \R� = ; (37)

in the case of disjoint composite regions.

2. For the second case, suppose instead that B� � B� but still that x 2 ~R� and that Ai 2 B�
such that ��(x) = �i(x) �Ni�. Then the inequality (34) still holds but instead of (35), we
now have

Ni� �Ni� � 1: (38)

From the de�nition of Ni� and the premise of the case. This along with (34) implies that

�� +Ni� �Ni� = �i(x)�Ni� � ��(x) < 0 =) R� \R� = ;: (39)

Thus the claim holds for both cases.

The fact that the R� do not intersect allows us to place the following bound on the dual objective:Z
M

� �
X
�

Z
R�

�: (40)

Now using Hamilton-Jacobi theory (taking
R
c
� ds to be the action), we �nd that � = j~r��(x)j

thus we can rewrite this as: Z
M

� �
X
�

Z
R�

j~r��(x)j (41)
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Figure 6: Illustration of the proof by decomposition. a) depicts step 1; the choice of
source boundary regions and the identi�cation of their minimal surfaces. b) depicts
step 2; the dividing of the bulk into cells. c) depicts step 3; �nding a maximal thread
con�guration for the boundaries of each bulk cell, and lastly d) depicts step 4; in
which the bulk cells are recombined to obtain a maximal thread con�guration for the
original problem identi�ed in step 1.

Since the integrals on the RHS correspond to the average area of the level sets of �� homologous
to B� they must be at least as great as the area of the minimal surface homologous to B�. So:Z

M

� �
X
�

Z
R�

j~r��(x)j �
X
�

S(B�) (42)

by the RT formula. However by strong duality, the minimum of the LHS, subject to the correct
constraints, must be equal to the optimum of the primal program. Thus the ux of the multiow
from all B� is both bounded above and below by the sum of their entropies, and thus we can
conclude that there exists a multiow which is maximal for all B� so long as there is no crossing
between them.

3.2 Proof by Decomposition

In addition to the proof above, which relies on computing the dual program and constraining it’s
solution, we provide a second proof. Rather than relying on the formal theory of convex programs,
this proof will be a proof by construction. We will present a method for constructing a multiow
which saturates on the minimal surfaces of all chosen boundary regions, and thus can be used to
simultaneously calculate their entropies. To avoid confusion regarding orientation, we will proceed
by talking mainly in the language of bit threads, knowing that once we have �nished constructing
a thread con�guration it can be converted into a proper multiow.

The procedure for constructing a maximal multiow for any set of non-crossing boundary
regions is:

1. Choose a set of non-crossing regions of the boundary to calculate the entropies of. Recall that
this means that for any two chosen regions, either they are disjoint, or one is nested inside
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of the other. In the bulk, determine the minimal surfaces homologous to each boundary
region and denote them m(B�). It is important to note that since the boundary regions are
non-crossing, the regions given by the interior of B� [m(B�) also do not cross for any two
choices of �.

2. Now note that the boundary regions and minimal surfaces divide the entirety of the bulk into
a �nite number of \cells." In the case where the boundary regions are non-crossing, there are
a few di�erent cases for these cells.

(a) The cell is the interior of B� [m(B�) for some choice of �.

(b) The cell is bounded by the minimal surface of some boundary region which has other
source regions nested within it. In this case, the form of the cell is not that of (a), but
instead, the cell is now given by

Int
�
B� [m(B�)

�
�

[
B��B�

Int
�
B� [m(B�)

�
: (43)

In general, these cells will be bounded by the minimal surface of m(B�), some subset
of B� itself, and the minimal surfaces of the regions nested within B�.

(c) The last type of bulk cell which we will encounter for non-crossing regions is bounded
by none of the source boundary regions, but rather bounded by the interior of the union
of the purifying region and its minimal surface. In other words, this last cell type is the
compliment of the union of all other bulk cells.

3. Constructing a maximal thread con�guration for each individual bulk cell is straight for-
ward if we make use of Theorem 1 from [4]. This theorem tells us that for any number
of disjoint regions, there exists a multiow (or thread con�guration) that is simultaneously
maximized on all of them. Since the proof of this theorem is completely independent of the
bulk/boundary geometry, we are free to apply it to individual bulk cells. Based on the cells
described in step 2, we can choose our ‘sub-source regions’ for each bulk cell to be either a
minimal surface of some source region or some subset of our source region. This gives us a
decomposition of the boundary of each bulk cell into disjoint regions.

Now for each region bounding each bulk cell we make use of the theorem from [4] to con-
struct/state the existence of a thread con�guration which is maximal for all boundaries of
each cell.

4. Now that we have a maximal thread con�guration for each bulk cell, we must now recombine
them and show that this thread con�guration is maximal for each source region. We do this
by taking note of the following facts:

(a) Since any minimal surface is the minimizer of its homology class, we know that the
maximum number of threads which can be placed on them is equal to their area. This
means that any thread con�guration which maximizes on a minimal surface will have
the threads maximally packed everywhere on it.

(b) By virtue of how we have divided the bulk, every minimal surface forms part of the
boundary of exactly two bulk cells.
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(c) Because of (a) and (b) when two adjacent bulk cells are recombined, the density (and
direction) of threads on their shared boundary will be equal and maximal. This allows
us to put the bulk cells back together and think of the thread con�gurations on the
individual bulk cells as being continuous over their shared boundaries.

5. Thus stitching together to maximal thread con�gurations on each individual bulk cell gives
us a well de�ned thread con�guration for the entire bulk. The fact that there is no crossing
in our chosen source regions ensures that their minimal surfaces will not cross either. Thus
once a thread leaves a one bulk cell it will not return to it from another one when the bulk
is stitched back together. This means that no threads will loop back to the boundary region
they leave from. If this were not the case the proof would fail since threads which return to
the boundary they leave from correspond to �eld lines with net zero ux. The fact that no
thread returns to a region it leaves is clear from the fact that the graph model describing this
setup is a tree graph if no crossing is present. Since this is the case and thread con�guration
is maximized on all of the minimal surfaces of the source regions (by construction), and the
entire thread con�guration must be maximal for all source regions.

6. Now all that is left to do is to convert this thread con�guration into a proper multiow by
choosing an orientation for the threads. Once this is done, the construction is complete and
the proof is concluded.

4 Multiflows for Crossing Regions

Since mutliows are capable of computing the entropy of arbitrary non-crossing regions, we can
now ask if they can do the same for crossing regions. In order to test this, we will consider a
relatively simple problem.

The machinery of convex optimization and multiows make no reference to any particular
geometry, and so we are free to work in a simpler geometry than AdS. With that in mind, we
consider the unit square on R2 given by (0; 1)2. We label the sides of this square A; B; C and D,
and de�ne a mutliow on this square; f~vijg where i; j 2 fA;B;C;Dg. Note that the entropy of
any single region on its own is given by;

S(A) = S(B) = S(C) = S(D) = 1 (44)

since the minimal surface of each is simply the region itself. Furthermore, the entropy of the union
two adjacent sides are equal to

S(AB) = S(AD) = S(BC) = S(CD) =
p

2; (45)

as displayed in Figure 7. In order to test multiows in the case of crossing source regions in this
toy problem, we attempt to maximize the ux of a multiow on this square over the crossing
source regions AB and BC. If multiows are capable of simultaneously computing the entropy of
two crossing regions, we should expect that the maximal ux from these source regions should be
S(AB) + S(BC) = 2

p
2. Approaching this problem can be done in two ways; attacking it head

on, or dualizing the problem and trying to �nd a solution to that. We will do both, starting with
analytic ansatzes and then attempting to numerically compute the solutions for both the primal
and the dual on a lattice.
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Figure 7: An illustration of the minimal surfaces and corresponding entropies of the
toy problem described.

4.1 Analytic Attempt: Primal

Before beginning, note that the convex program in question is this:

Primal: Maximize
R
AB

v(AB)(CD) +
R
BC

v(BC)(AD) with respect to f~vijg subject to
~r � ~vij 8i; j and

P
i<j j~vij j � 1.

We may rewrite the objective of this program asZ
AB

(vAC + vAD + vBC + vBD)

Z
BC

(vBA + vBD + vCD + vCA) (46)

=

Z
A

(vAB + 2vAC + vAD) +

Z
B

(vBC + 2vBD) +

Z
C

vCD:

There are two important things to consider for formulating an ansatz for this problem. First, note
that the square itself exhibits the full range of symmetries of the Dihedral-4 group, thus there
should exist a maximal solution which exhibits the sames symmetries. We may restrict ourselves
to ansatzes which do so, thereby narrowing the range of possible solutions. Secondly, note that
the ows vAC and vBD contribute twice as much as the other ows in the objective function.

This second fact is misleading in some ways, as one may assume that the maximal solution will
be one with both of these ows dominating the bulk. However, note that only one of them can be
saturated on the entire square at once. There are three things one may try to get around this;

1. Make all ows zero except for one of these two (say ~vAC) which has magnitude one on the
entire square. This gives a total ux of 2 < 2

p
2.

2. Compromise and make both ows ~vAC and ~vBD non-zero with magnitude 1
2 everywhere.

This too gives a total ux of 2 < 2
p

2
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Figure 8: An illustration of our maximal ansatz. Flows between opposite sides of
the square are shown in red and ows between adjacent sides in blue. Note that the
density of the ow lines going across the square is maximal at the boundary but less
in the interior of the square. In order to give l′ the necessary value of l′ = 2(1 � 2r)

we choose r = 1

4−
√

2
. This gives a total ux of 4

(
3−
√

2

4−
√

2

)
.

Evidently, these double-counted ows alone will not give a maximal solution (unless the maximum
ux is 2). Next we might guess that the ows between adjacent sides, which are only counted once
in the objective, form quarter circles of radius r about the corners of the square. A quick check
con�rms that if these are the only ows in the system the maximal value of the ux is once again
2.

For a more sophisticated guess, we maintain that the ows between adjacent sides will ow in
quarter circles in which the norm bound is saturated, but now we have nonzero ows from opposite
sides as well. The symmetry suggests that these cross ows must be equal at the center of the
square and thus their magnitude there cannot exceed 1

2 . In order to maximize the ow between
opposite sides, we can imagine giving the ows a norm of 1 on the available space on the boundary
and then having the threads spread out as space is made available for them. This will continue up
to the point where they are no longer restricted by the ows between adjacent sides. From there,
we assume for simplicity that the threads will ow uniformly across the square until obstructed
again. In order to accomplish this, we can imagine placing a smaller square concentrically inside
the unit square such that within it the ows between opposite sides are uniform and of magnitude
1
2 . The size of this square is limited by the radius of the quarter circles formed by the ows between
adjacent sides. Such a con�guration is depicted in Figure 8.

A very brief geometrical calculation tells us that, in order for the ows between opposite sides
to have magnitude 1 on the boundary and 1

2 in the center, we must choose a radius r = 1
4�
p

2
for

the quarter circles formed by the ows between adjacent sides. This is such that l0 = 2(1 � 2r)
where l0 is the side length of square enclosing the uniform cross-ow.

This con�guration gives a total ux of
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Z
AB

v(AB)(CD) +

Z
BC

v(BC)(AD) = 4(
1

4�
p

2
) + 4

�
1� 2

4�
p

2

�
� 2:453 (47)

Which is larger than 2 but still less than the expected value of 2
p

2.
We can imagine improving this ansatz by making the ways the ows behave a little less rigid

and discontinuous, but to do this analyticly is not feasible. Instead, we can dualize this problem in
order to see if we can really achieve our desired goal of calculating the entropies of the two crossing
regions simultaneously.

4.2 Analytic Attempt: Dual

We dualize our program in the usual way of removing the constraints and adding them into
the objective multiplied by Lagrange multipliers and then maximizing with respect to the usual
variables.

L =

4X
i=1

4X
j>i

Z
Ai

vij +

Z
M

4X
i=1

4X
j>i

 ij(~r � ~vij) + �(1�
4X
i=1

4X
j>i

j~vij j) (48)

Where A1 = A; A2 = B, etc. By performing integration by parts on the second term in the
Lagrangian and demanding that the resulting boundary terms vanish (to ensure that our maximum
ux is �nite) we gain the conditions:

 AB jA =  AC jA =  ADjA =  BC jB =  BDjB =  CDjC = �1 (49)

 AB jB =  ADjD =  BC jC =  )CDjD = 0

 AC jC =  BDjD = 1

And we are left with a Lagrangian

L =

Z
M

��
4X
i=1

4X
i<j

(~vij � ~r ij + �j~vij j) (50)

This is maximized with respect to the ows when ~vij is anti-parallel to ~r ij , at which point if we
want the maximum of our program to be �nite we better require that

� � j~r ij j 8i; j: (51)

At this point the maximum value of the Lagrangian occurs when all ows are equal to zero and
we are left with the objective of our dual program;Z

M

� (52)

which we will minimize with respect to � and  ij subject to the constraints given by equations
(51) and (49).

Note that these constraints together imply that for the path integral of � along some path c;Z
c

�ds �

(
1 c connects adjacent sides of square

2 c connects opposite sides of square:
(53)
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Figure 9: Illustration of ansatzes for the dual program. On the left is the con�gu-
ration we expect based on the Locking Theorem. Here � is zero ever where except
for on the minimal surfaces for AB and BC, where it is in�nite. On the right is an
example of a feasible � which returns a smaller value of the objective. Most every-
where � = 2 except for delta functions coming from the corners which have a weight
which decreases linearly with distance from the corner.

This lets us rephrase the dual program in as

Minimize

Z
M

� with respect to � subject to equation (53).

Recall that if the primal program is to return the sum of the entropies of the regions sourcing
the multiow, then the dual program should return the same. The � that is minimizes the dual
program should be a delta function located on those surfaces and zero everywhere else in the bulk.
For this problem then, we hope that � consists of delta functions connecting opposite corners of
the square, which would give 2

p
2 when integrated over the entire square. If there is a choice of �

which satis�es the constraints given and has an area integral less than 2
p

2 then the objective of
our primal program will be bounded above by this value. Thus the multiows will fail to compute
the entropies of the crossing regions.

If we try to think of such a � we may be tempted to start by making � take a constant value
of 2 everywhere. This would automatically satisfy the constraint for paths connecting opposite
sides of the square, however it does not satisfy the constraint on all paths between adjacent sides.
Simply stated this is because the minimum length of a path connecting opposite sides is 1 while
the minimum length of paths connecting adjacent sides is in�nitesimal. Thus we know that any
feasible � must go to in�nity at the corners of the square.

As an extension of this thought, we can place delta functions along the lines connecting opposite
corners of the square which are weighted such that they ensure that paths between adjacent sides
are ensured to be greater than 1 when integrated against �. In doing this calculation we �nd that
the appropriate weight to add to these delta functions is

1� 2
p

2�; (54)

where � is the distance from the nearest corner of the square. Note that at � = 1
2
p

2
the delta

function ends. Integrating this weight from 0 � � � 1
2
p

2
tells us that each one of these four
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weighted delta functions contributes
p

2
8 to the objective. Thus for this ansatz we haveZ

M

� = 2 + 4

p
2

8
= 2 +

p
2

2
� 2:707 < 2

p
2: (55)

Since the value of the objective function of the dual program for any feasible point gives us a
strict upper bound of the maximum of the primal objective function, this lets us conclude that
the multiow formalism fails to compute the entropies when presented with crossing regions (or at
the very least will not always be successful). We can ask what the actual solution to the problem
is if not the entropies of the source regions. Since our analytic ansatzes are likely not the true
solutions, our best bet is to turn to numerical optimization to �nd an answer.

4.3 Numerical Check: Dual

4.3.1 Implementation

For all numerical work we have used the optimization tools built into Wolfram Mathematica (11).
To numerically compute the optimum of the dual and primal programs, we �rst discretize the unit
square to an L�L lattice. What variables we de�ne on these lattice sites will change between the
computation of the primal and dual programs. For both programs we will �nd the solution to the
optimization problem for increasing values of L (doing so e�ectively increases the ‘resolution’ of
our computation).

We will start with our treatment of the dual program. In performing this exercise, we hope to
learn how far the optimum of our primal program is from the expected value of 2

p
2 as well as get a

sense of the form of � which gives the minimum of the dual program to see what we can learn from
it. For the computation, we will implement the dual program in the form of equation (52) subject
to the constraints (49) and (51). On each lattice site we de�ne the variables  XY (i; j), where
X;Y 2 fA;B;C;Dg and i; j 2 f1; 2; :::; Lg, and impose the appropriate boundary conditions on
each  XY on the outermost lattice sites. When X and Y represent adjacent sides of the square, we
assign to  XY a value of half the di�erence between its two boundary values at the corner where
X and Y meet. Now we can compute the magnitude of the gradient of each  XY on the plaquette
(the set of which we can think of as an (L � 1) � (L � 1) lattice). The numerical magnitude of
gradient of  XY on the plaquette labeled by (i; j) is given by

� XY (i; j) =
L� 1p

2

�
( XY (i+ 1; j + 1)�  XY (i; j))2 + ( XY (i; j + 1)�  XY (i+ 1; j))2

� 1
2 : (56)

We also de�ne variables �(i; j) on each plaquette and constrain them by the magnitude of the
gradient of all  XY on the (i; j)th plaquette.

The last thing we must do before proceeding with the computation is de�ne our objective. The
integral of � over the square is given by

Objective =
1

(L� 1)2

L�1X
i;j=1

�(i; j): (57)

Doing this has fully de�ned the dual program numerically, so all that is left to do is feed the
information into Mathematica’s built in optimization tools. Before this is done, however, it is
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Figure 10: Each site on the L�L lattice has the variables  XY . These are used to
constrain the � in the square enclosed by neighboring lattice points.

worth noting that we have de�ned 6 � (L2 � 2L) + (L � 1)2 variables to minimize with respect
to. Obviously this will grow rapidly as we increase L, so it is in our best interest to reduce the
number of variables in our program for the sake of e�ciency of computation. Luckily, we have yet
to consider the many symmetries of our problem. Doing so will allow us to reduce the number of
variables tremendously.

If we want to compute a solution which obeys all the symmetries of our system, we can �rst
say that out of the six  XY we have de�ned, only two of them are really independent. This lets
us consider only  AB and  AC . The other four  XY are related to these two by rotations and
reections. Additionally, we can say that since the � which will result from our computation should
be symmetric under elements of the Dihedral-4 group, we only need to compute it on one eighth
of the square, as shown in Figure (11).

Once these changes were implemented, we computed the solution to the program for a number
of lattice sizes. As expected from our analytic endeavors, we found that the � which gave the
minimum objective value was not the given by a delta function along the minimal surfaces of AB
and AC, but rather a much more complicated function.

4.3.2 Results

Qualitatively, it appears that the true minimal solution retains some of the cross structure from
the minimal surfaces we were expecting to �nd, but much more relaxed and spread out. We found
that the � did indeed begin to diverge towards in�nity in our numerical solution, as it must. In
addition there is a local maxima at the center of the square and a raised ridge connecting this
maxima to the corners, giving the function a slight cross-like feature. There is also a set of local
minima which are displaced from the center of each side of the square.

We can analyze the structure of this solution by considering the condition of complementary
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Figure 11: The symmetries of the square allow us to do our computation only for
the shaded triangle in the �gure. The solution on the rest of the square will be related
to that on this triangle by rotations and reections. The boundary conditions for the
independent  XY s are also shown. We gain a new boundary condition on  AC from
symmetry.

slackness [5], which tells us that

�(1�
4X

X=1

4X
Y >X

j~vXY j) = 0 (58)

at every point on the square. In this way, � acts a measurement of how much (or how little) the
norm bound on the multiows is saturated in the corresponding optimum of the primal. If � = 0
anywhere, this must then mean that at this point the sum of the magnitudes of all the ows in
the primal solution will be less than 1. If � is greater than zero, then they must sum to exactly
one. The higher � is at a particular point, the more ‘pressure’ the norm bound is putting on the
multiows at that particular point.

Using this to guide our analysis of the solution to the dual is useful in a few respects, but one is
particularly noteworthy. In the solution we compute, � is nowhere zero. Thus the multiow that
maximizes the primal program must saturate the norm-bound everywhere on the square, which
was not true in our analytic ansatz.

The maximum lattice size we computed a solution for L = 33 and this gave an objective value
of � 2:532. A contour map of the � found from this is shown in Figure 12.

4.4 Numerical Check: Primal

4.4.1 Implementation

Now that we have a numerical solution to the dual program, there are a few good reasons to
compute that of the primal. Firstly, we can check that the numerical solution to the primal

23



Figure 12: Left: A contour map � giving the minimal value of the objective on a
L = 33 lattice. Right: A 3D plot of the same.

program has a solution which is consistent to that of the dual. Secondly, looking at the maximal
multiow con�guration for the program may give us some insight into why the multiow formalism
is unable to compute the entropies for crossing source regions.

We may once again make use of the symmetries of the square to pare down the number of
variables that are optimized over. Instead of computing all six ows, we can get away with
computing only two: one between adjacent sides and one between opposite sides of the square. All
other ows will be related to these by reections and rotations. We choose to compute ~vAB and
~vAC explicitly.

To actually compute these ows and the ux through the corresponding regions, it is easiest to
de�ne pseudoscalar streamfunctions for the ows, the curl of which are the ows themselves.

~r� �XY � ~vXY (59)

Note that this is only permissible because we are dealing with divergencless vector �elds in two
dimensions.

There are a few important properties of the streamfunction which will come in handy. First, as
alluded to above, this de�nition of the ows in terms of streamfunctions automatically gaurantees
that the ows will be divergenceless. Second, the magnitude of the the curl of the streamfunction
is equal to that of its gradient. Thus

j~vXY j = j~r� �XY j = j~r�XY j: (60)

So we can compute the magnitude of gradient on the lattice for use in imposing the norm-bound on
the multiow, similar to how we imposed the lower bound on � in the dual program. Lastly, the fact
that ow ~vXY will have no ux through a boundary Z if Z 6= X;Y tells us that the corresponding
streamfunction will be constant along that boundary. By enforcing this, we can de�ne a variable
�0
XY which represents the constant value taken by the streamfunction on some boundary. By

demanding that the streamfunction be zero on another boundary, or at some appropriate point,
we can use the fundamental theorem of calculus to writeZ

X

vXY =

Z
X

j~r�XY j = �0
XY : (61)
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Figure 13: We de�ne streamfunctions on the square, which will ensure that the
resulting ows are divergencless. The boundary conditions on the streamfunctions
ensure that the ows have ux through the appropriate regions. Allowing the stream-
function to take a constant, but undetermined value at one boundary will allow us to
compute the total ux of the resulting ow �eld.

This lets us express the objective of the primal program asZ
AB

v(AB)(CD)) +

Z
BC

v(BC)(AD) = 4(�0
AB + �0

AC): (62)

The factor of 4 is included to account for the fact that we only compute two of the six ows, as
well as the fact that the ows between opposite sides are weighted twice as heavily as the others.

All that is left to do now before performing the computation is to impose the constraint on
the norm of the ows. This turns out to be a non-trivial task. One complication arises from a
quirk of Wolfram Mathematica’s built in optimization functions. The norm-bound constraint is a
sum of absolute values, which is not a smooth function. If this is not corrected, Mathematica’s
optimization functions would return strange, often non-feasible, solutions or worse yet, would fail
entirely. In order to correct for this, we can ‘smooth’ out the norm-bound constraint by changing
it to

4X
X=1

4X
Y >X

p
j~vXY j2 + � � 1: (63)

We �x the value of epsilon to be su�ciently small that it does not change the solution very much,
but su�ciently large as to resolve the problem described. For the work described here we set
� = 0:001.

A second complication with imposing the norm-bound on the lattice comes about when we
consider the consequences of how we have calculate the magnitude of gradients on the lattice.
If we choose to compute the gradients of �XY in a fashion similar to the one used for the dual
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program (56), then one will realize that adding any constant to a function at lattice sites (i; j)
and (i+ 1; j + 1) will not change the value of the gradient. However, this constant can change the
value of the objective. Mathematica’s optimization procedure will make use of this, giving rise to
strange solutions with objective values above that of the true solution.

To avoid this, we calculate the magnitude of the gradient of �XY in a number of di�erent ways
and impose norm-bounds on all of them. The magnitudes we calculated are:

�1�XY (i; j) = (L� 1)
p

(�XY (i+ 1; j)� �XY (i; j))2 + (�XY (i; j + 1)� �XY (i; j))2;

�2�XY (i; j) = (L� 1)
p

(�XY (i+ 1; j + 1)� �XY (i+ 1; j))2 + (�XY (i; j + 1)� �XY (i+ 1; j))2;

�3�XY (i; j) = (L� 1)
p

(�XY (i+ 1; j + 1)� �XY (i; j + 1))2 + (�XY (i; j)� �XY (i; j + 1))2;

�4�XY (i; j) = (L�1)
p

(�XY (i+ 1; j + 1)� �XY (i; j + 1))2 + (�XY (i+ 1; j)� �XY (i+ 1; j + 1))2:
(64)

This step completes the implementation of the primal program in Mathematica. We now
proceed to compute the solution to the program on lattices of increasing size.

4.4.2 Results

Starting at L = 5 we doubled the resolution until �nally performing the optimization on an L = 65
lattice. This resulted in an objective value of � 2:502, which is consistent with the result from
the computation of the dual program. A quick check of the maximal ow con�guration con�rms
that the norm-bound is saturated everywhere on the square, as suggested by our analysis of the
solution of to the dual program. By plotting the contours of �XY we can see the streamlines of
~vXY , which corresponds to the arrangement of the bit threads.

The thread con�guration we �nd appears to be similar to our analytic ansatz for the primal.
The ows between adjacent sides are the square form quarter circles centered at the corners. In
addition to this, the ows between adjacent sides start concentrated at the boundary of the square
where space is available and spreads out to half the density in the center of the square. The
maximal thread con�guration for a L = 65 lattice is shown in Figure (14).

5 Discussion and Future Work

For both the primal and dual programs we computed solutions numerically on lattices of di�erent
sizes. Plotting the value of the optimum primal and dual objectives for di�erent lattice sizes shows
how the optima converge on the lattice. This is shown in �gure 15. Based on this, we are con�dent
that both the result for the primal and dual programs reect the qualitative form of the optimal
solution as well as a descent estimate of the optimum value of the objective functions.

Based on this work, the Locking Theorem represents the point at which multiows in the
continuum begin to yield results which di�er from their discrete counterparts. In fact, outside of
actually �nding the solution given to us by multiows for a simple problem, there were other clues
which signaled that crossing regions may present a problem.

The most notable of these is built into the method used to prove the Continuum Max-Flow Min-
Cut theorem for some choice of source regions, an example of which is given by the dualization
proof in Section 3. These proofs rely on the fact that we can identify the level sets of �ij(x)
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Figure 14: The maximal thread con�guration of the primal program as given by
the contours of the streamfunctions �XY .

which are homologous to each source region, and that the regions composed of them do not cross.
However if we have crossing regions, then any curves homologous to the two crossing regions must
intersect one another. While this was not a death sentence for the idea that multiows may be
able to calculate the entropies for crossing regions, it certainly signals that the issue is non-trivial.

With the question of whether or not mutliows satisfy a ‘Continuum Locking Theorem’ an-
swered, we are left to wonder why it is that we have reached this conclusion. For answers, we turn
back to thinking about a graph model for holographic entanglement entropies.

Knowing the relevant minimal surfaces for the square problem (see Figure 8) allows us to
construct a graph model for the square in the way described in Section 2. On this graph we have
terminals which represent the regions A;B;C and D and we can ask the discrete version of our
original question. What is the maximal commodity ow we can send from AB to CD and from
BC to AD simultaneously. Of course, the Locking Theorem along with Max-Flow Min-Cut assures
us that this will end up being 2

p
2. An example of a con�guration in which this is achieved is

shown in �gure 16. With this we can ask; why isn’t an analogous con�guration possible in the
continuum?

While commodity ows on graphics are either parallel or anti-parallel to each other, a ow
in the continuum can take on other orientations relative to another ow. This leads to problems
wherever two RT surfaces cross in the bulk. Recall that in order for a ow to successfully calculate
the entropy of a source region it must have a norm a 1 and be perpendicular to the minimal surface
everywhere on the surface. Of course, these two features can not be accomplished simultaneously
on two minimal surfaces which cross one another.

In order to further the ability of the continuum multiow, we may consider changing its de�-
nition in some respects in an attempt to address this breakdown between the continuum and the
discrete. This would be accomplished by modifying the constraints which de�ne the multiow, the
most notable being the collective norm-boundX

i

j~vij � 1: (65)
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Figure 15: Plot showing optimal value of programs as a function of lattice size L.

This norm-bound is by far the simplest one to work with for multiows, but it may not be the
most physically signi�cant. As part of future work, we will be considering norm bounds of the
form X

i

j~vi � n̂j � 1 8n̂; (66)

where n̂ is a unit vector. Physically, this constraint is the statement that the number of bit
threads passing through a surface must not exceed the area of the surface divided by the area of
one thread. This is perhaps a more natural constraint for multiows. It is a weaker constraint than
the current norm-bound, but maintains the property that each component of a multiow is itself
a ow. In fact, with this norm bound, we can create a continuum multiow which is analogous to
the discrete commodity ow con�guration pictured in Figure 16 in which there is a uniform ow

between A and C and another between B and D, both with norm
p

2
2 . This could be a hint that

this norm-bound is the more physically relevant one and should be adopted in place of the current
constraint.

We must also acknowledge the possibility that, in order to perform entropy computations
for more complicated arrangements of source regions, we may need a new structure altogether.
One possibility is that this may be achieved by imposing a weaker constraint on the divergence
of multiows. It could be the case that we require something like a multiow, but which has
non-zero divergence governed by some rules or perhaps even another �eld. In order to cover all
bases, this must also be considered as a possibility even if its physical meaning, or even its form
is not immediately apparent. Regardless, we will explore both possibilities going forward in an
attempt to strengthen the multiow formalism and our understanding of the information structure
of holographic states.
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Figure 16: An example of a multi-commodity ow con�guration which is maximal
for both source regions AB and BC on the graph model corresponding to the square.
The edge capacities are shown in black and the commodity ows in blue and red.
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