GETTING A QUICK FIX ON COMONADS

A Senior Thesis Presented to

The Faculty of the School of Arts and Sciences

Brandeis University

Undergraduate Program in Computer Science

Harry G. Mairson, Advisor

In partial fulfillment of the requirements for the degree of

Bachelor of Science with Honors

by

Kenneth Foner

May 2015
Abstract

A piece of functional programming folklore due to Piponi provides Löb’s theorem from modal provability logic with a computational interpretation as an unusual fixed point. Interpreting modal necessity as an arbitrary Functor (in Haskell), the “type” of Löb’s theorem is inhabited by a fixed point function allowing each part of a structure to refer to the whole.

However, Functor’s logical interpretation may be used to prove Löb’s theorem only by relying on its implicit functorial strength, an axiom not available in the provability modality. As a result, the well known loeb fixed point “cheats” by using functorial strength to implement its recursion.

Rather than Functor, a more faithful Curry to modal logic’s Howard is a closed comonad, of which Haskell’s ComonadApply typeclass provides analogous structure. Its computational interpretation permits the definition of a novel fixed point function allowing each part of a structure to refer to its own context within the whole. This construction further guarantees maximal sharing and asymptotic efficiency superior to loeb for locally contextual computations upon a large class of structures.

By adding a distributive law, closed comonads may be composed into spaces of arbitrary dimensionality which preserve the performance guarantees of this new fixed point.

Applications of this technique include calculation of multidimensional “spreadsheet-like” recurrences for a variety of cellular automata.
Contents

Introduction ... 1
1 Modal Logic, Squished to Fit in a Small Box 2
2 A Bridge Built on a Functor .. 2
3 Is the Box Strong Enough? .. 4
4 Contextual Computations, Considered 7
5 A Curious Comonadic Connection 8
6 Taping Up the Box ... 9
7 Taking possibility for a Test Drive 11
8 Laziness sans Sharing ≡ Molasses in January 12
9 Finding Some Closure .. 14
10 Putting the Pieces Together .. 15
11 Consulting a Road Map ... 17
12 A Zippier Fix .. 19
13 Building a Nest in Deep Space .. 21
14 Introducing Inductive Instances 23
15 Asking for Directions in Higher Dimensions 27
16 Following Directions in Higher Dimensions 29
17 New Construction in Higher Dimensions 31
18 Conclusion ... 34
19 Further Work ... 37
Acknowledgements ... 38
References ... 39
A Proof: loeb(→)r ≡ fix ▪ flip ... 41
B Proof: loeb Uses Functorial Strength 41
C Full Listing of the Function asNestedAs 42
Introduction

In 2006, Dan Piponi wrote a blog post, “From Löb’s Theorem to Spreadsheet Evaluation,” [19] the result of which has become a curious piece of folklore in the Haskell community. He writes that one way to write code is to “pick a theorem, find the corresponding type, and find a function of that type.” As an exercise in this style of Curry-Howard spelunking, he picks Löb’s theorem from the modal logic of provability and attempts to derive a Haskell program to which it corresponds.

Several years later, I came across his loeb function myself and was fascinated equally by its claimed Curry-Howard connection as by its “almost perverse” reliance on laziness (to borrow a phrase from Chris Done [6]). As I explored loeb’s world, however, something increasingly seemed to be amiss. Though the term Piponi constructs has a type which mirrors the statement of Löb’s theorem, the program inhabiting that type (that is, the proof witnessing the theorem) is built from a collection of pieces which don’t necessarily correspond to the available and necessary logical components used to prove Löb’s theorem in the land of Howard.

Piponi is clear that he isn’t sure if his loeb term accurately witnesses Löb’s theorem. Nevertheless, some people describing his work are wont to exaggerate; that his loeb equates to Löb’s theorem is a computational folktale in certain circles.

I take Piponi’s loeb as an opportunity to embark on a quest for a closer translation of Löb’s theorem, from the foreign languages of modal logic to the familiar tongue of my homeland: Haskell. This journey will lead us to find a new efficient comonadic fixed point which inhabits a more accurate computational translation of Löb’s theorem (§1–10). When combined with the machinery of comonadic composition, we’ll find that this fixed point enables us to concisely express “spreadsheet-like” recurrences (§12) which can be generalized to apply to an n-dimensional infinite Cartesian grid (§13–14). Using this machinery, we can build a flexible embedded language for concisely describing such multi-dimensional recurrences (§15–17) such as the Fibonacci sequence, Pascal’s triangle, and Conway’s game of life (§18).
1 Modal Logic, Squished to Fit in a Small Box

The first step of the journey is to learn some of the language we’re attempting to translate: modal logic. Modal logics extend ordinary classical or intuitionistic logic with an additional operator, □, which behaves according to certain extra axioms. The choice of these axioms permits the definition of many different systems of modal logic.

Martin Hugo Löb’s eponymous theorem is the reason this paper exists at all. In the language of modal logic, it reads:

□(□P → P) → □P

If we read □ as “is provable,” this statement tells us that, for some statement P, if it’s provable that P’s provability implies P’s truth, then P itself is provable.

Conventionally, Löb’s theorem is taken as an additional axiom in some modal logic [23], but in some logics which permit a modal fixed point operation, it may be derived rather than taken as axiomatic [15]. In particular, Löb’s theorem is provable in the K4 system of modal logic extended with modal fixed points [16]. We’ll return to this proof later. First, we need to understand Piponi’s derivation for a Löb-inspired function: it’s fun and useful, but further, understanding what gets lost in translation brings us closer to a more faithful translation of the theorem.

2 A Bridge Built on a Functor

To carry Löb’s theorem across the river between logic and computation, we first need to build a bridge: an interpretation of the theorem as a type. If we read implication as Haskell’s function arrow (and we will), then the propositional variable P must necessarily translate to a type variable of kind * and the modal □ operator must translate to a type of kind * → *. Thus, the type signature for Löb’s computational equivalent must take the form:
\[\text{loeb :: } ??? \Rightarrow f \ (f \ a \to a) \to f \ a \]

There is an unspecified constraint (???) in this signature because we’re looking for something of maximal generality, so we want to leave \(f \) and \(a \) polymorphic – but then we need to choose a constraint if we want any computational traction to build such a term.

Piponi fills the unknown constraint by specifying that \(f \) be a \textbf{Functor}. Under this assumption, he constructs the \textbf{loeb} function.\(^1\)

\[
\begin{align*}
\text{loeb :: Functor } f & \Rightarrow f \ (f \ a \to a) \to f \ a \\
\text{loeb } fs & = \text{fix } (\lambda x \to \text{fmap } ($ x) fs)
\end{align*}
\]

This function’s meaning has an easy intuition when \(f \) is taken to be a “container-like” \textbf{Functor}. In this case, \textbf{loeb} takes a container of functions from a whole container of \(a \)s to a single \(a \), and returns a container of \(a \)s where each element is the result of the corresponding function from the input container applied to the whole resultant container. More succinctly: \textbf{loeb} finds the unique fixed point (if it exists) of a system of recurrences which refer to each others’ solutions by index within the whole set of solutions. Even more succinctly: \textbf{loeb} looks like evaluating a spreadsheet.

Instantiating \(f \) as \([\]\), we find:

\[
\text{loeb } [\text{length},(!! 0),\lambda x \to x !! 0 + x !! 1] \equiv [3, 3, 6]
\]

As expected: the first element is the length of the whole list (which may be computed without forcing any of its elements); the second element is equal to the first element; the last element is equal to the sum of the first two. Not every such input has a unique fixed point, though. For instance:

\[
\text{loeb } [\text{length, sum}] \equiv [2, \bot]
\]

We cannot compute the second element because it is defined in terms of itself, strictly. Any part of \textbf{loeb}’s input which requires an element at its own position to be strictly evaluated

\(^1\)For pedagogical reasons, we rephrase this to use an explicit fixed point; Piponi’s equivalent original is: \textbf{loeb } g = x \textbf{where } x = \text{fmap } ($ x) g.
will return ⊥. More generally, any elements which participate in a cycle of any length will return ⊥ when evaluated with \(\text{loeb} \). This is necessary, as no unique solution exists to such a recurrence.

Instantiating \(\text{loeb} \) with other functors yields other similar fixed points. In particular, when \(f \) is \((→)\) \(r \), the “reader” functor, \(\text{loeb} \) is equivalent to a flipped version of the ordinary fixed point function:

\[
\text{loeb}_{(→)r} :: (r → (r → a) → a) → r → a
\]

\[
\text{loeb}_{(→)r} \equiv \text{fix} \circ \text{flip}
\]

(See Appendix A for elaboration.)

3 Is the Box Strong Enough?

Despite its intriguing functionality, the claim that \(\text{loeb} \) embodies a constructive interpretation of Löb’s theorem – now relatively widespread – doesn’t hold up to more detailed scrutiny. In particular, the implementation of \(\text{loeb} \) uses \(f \) implicitly as a strong functor, and \(□ \) emphatically is not one.

In order to see why that’s a problem, let’s take a closer look at the rules for the use of \(□ \). The K4 system of modal logic, as mentioned earlier, allows us to prove Löb’s theorem once we add to it modal fixed points. This ought to ring some Curry-Howard bells, as we’re looking for a typeclass to represent \(□ \) which, in conjunction with computational fixed points, will give us “Löb’s program.” The axioms for the K4 system are:

\[\vdash □A → □□A \quad \text{axiom (4)} \]

\[\vdash □(A → B) → □A → □B \quad \text{distribution axiom} \]

Informally, axiom (4) means that if \(A \) is provable with no assumptions then it’s provably provable, and the distribution axiom tells us that we’re allowed to use modus ponens inside of the \(□ \) operator.
Additionally, all modal logics have the “necessitation” rule of inference that $\vdash A$ lets us conclude that $\vdash \Box A$ [9]. An important thing to notice about this rule is that it does not allow us to derive $\vdash A \rightarrow \Box A$, though it might seem like it. Significantly, there are no assumptions to the left of the turnstile in $\vdash A$, so we can lift A into the \Box modality only if we can prove it under no assumptions. If we try to derive $\vdash A \rightarrow \Box A$, we might use the variable introduction (axiom) rule to get $A \vdash A$, but then get stuck, because we don’t have the empty context required by the necessitation rule to then lift A into the \Box.

Nevertheless, the necessitation and distribution axioms are sufficient to show that \Box is a functor: if we have some theorem $\vdash A \rightarrow B$, we can lift it to $\vdash \Box(A \rightarrow B)$ by the necessitation rule, and then distribute the implication to get $\vdash \Box A \rightarrow \Box B$. Thus, in modal logic, if we have $\vdash A \rightarrow B$ then we have $\vdash \Box A \rightarrow \Box B$, and so whatever our translation of \Box, it should be at least a Functor.

That being said, loeb is secretly using its Functor as more than a mere functor – it uses it as a strong functor. In category theory, a functor is strong with respect to some product operation (\times) if we can define the natural transformation $F(a) \times b \rightarrow F(a \times b)$ [13]. In Haskell, every Functor is strong because we can form closures over variables in scope to embed them in the function argument to fmap. As such, we may flex our functorial muscles any time we please:23

\[
\text{flex} :: \text{Functor } f \Rightarrow f\ a \rightarrow b \rightarrow f\ (a, b)
\]
\[
\text{flex } f\ b = \text{fmap } (,\ b)\ f
\]

We can rephrase loeb in point-free style; it then becomes clear that it depends upon functorial strength:

2This definition of flex is curried, but since the product we’re interested in is \cdot, uncurry flex matches the categorical presentation exactly. We present it curried as this aids in the idiomatic presentation of later material.

3In the definition of flex, we make use of GHC’s TupleSections syntactic extension to clarify the presentation. In this notation, $(a,) \equiv \lambda b \rightarrow (a, b)$ and $(, b) \equiv \lambda a \rightarrow (a, b)$.

loeb :: Functor f ⇒ f (a → a) → f a
loeb f ≡ fix (fmap (uncurry ($) ◦ flex f))

(See Appendix B for elaboration.)

While the loeb function needs to flex, K4’s □ modality does not have the strength to match it. We’re not permitted to sneak an arbitrary “unboxed” value into an existing box – and nor should we be. Given a single thing in a box, □A, and a weakening law, □(A × B) → □B, functorial strength lets us fill the □ with whatever we please – thus □ with functorial strength is no longer a modality of provability, for it now proves everything which is true. In Haskell, this operation constitutes “filling” an a-filled functor with an arbitrary other value:

fill :: Functor f ⇒ f a → b → f b
fill f = fmap snd ◦ flex f

You might know fill by another name: Data.Functor’s ($>).

In a true constructive interpretation of Lőb’s theorem into Haskell, we have to practice a kind of asceticism: though functorial strength is constantly available to us, we must take care to eschew it from our terms. To avoid using strength, we need to make sure that every argument to fmap is a closed term. This restriction is equivalent to the necessitation rule’s stipulation that its argument be provable under no assumptions. Haskell’s type system can’t easily enforce such a limitation; we must bear that burden of proof ourselves.4

Piponi chooses to translate □ to Functor as an initial guess. “But what should □ become in Haskell?” he asks. “We’ll defer that decision until later and assume as little as possible,” he decides, assigning the unassuming Functor typeclass to the modal □. Given that Functor isn’t a strong enough constraint to avoid using functorial strength, a closer translation of the theorem requires us to find a different typeclass for □ – one with a little more oomph.

4The typing rules for Cloud Haskell’s static special form depend on whether a term is closed or not – only certain sorts of closed terms may be serialized over the network – but these rules are specific to this particular feature and cannot presently be used for other purposes [7].
4 Contextual Computations, Considered

Recall that \texttt{loeb} intuitively represents the solution to a system of recurrences where each part of the system can refer to the solution to the whole system (e.g. each element of the list can be lazily defined in terms of the whole list). Specifically, individual functions \(f \ a \to a \) receive via \texttt{loeb} a view upon the “solved” structure \(f \ a \) which is the same for each such viewing function.

A structure often described as capturing computations in some context is the comonad, the monad’s less ostentatious dual. In Haskell, we can define comonads as:

```haskell
class Functor \( w \Rightarrow \) Comonad \( w \) where
  extract :: \( w \ a \) \to \( a \) -- dual to \texttt{return}
  duplicate :: \( w \ a \) \to \( w \ (w \ a) \) -- dual to \texttt{join}
  extend :: (\( w \ a \to b \)) \to \( w \ a \to w \ b \) -- dual to \( (=\ll) \)
```

For a \texttt{Comonad} \(w \), given a \(w \ a \), we can \texttt{extract} an \(a \). (Contrast this with a \texttt{Monad} \(m \), where we can \texttt{return} an \(a \) into an \(m \ a \).) We can also \texttt{duplicate} any \(w \ a \) to yield a doubly-nested \(w \ (w \ a) \). (Contrast this with a \texttt{Monad} \(m \), where we can \texttt{join} a doubly-nested \(m \ (m \ a) \) into an \(m \ a \).

Comonads also follow laws dual to those of monads:

\[
\text{extract} \circ \text{duplicate} \equiv \text{id} \quad \text{(1)}
\]

\[
\text{fmap extract} \circ \text{duplicate} \equiv \text{id} \quad \text{(2)}
\]

\[
\text{duplicate} \circ \text{duplicate} \equiv \text{fmap duplicate} \circ \text{duplicate} \quad \text{(3)}
\]

Since \texttt{duplicate} has type \(w \ a \to w \ (w \ a) \), these laws tell us: we can eliminate the \textit{outer} layer (1) or the \textit{inner} layer (2) from the doubly-nested result of \texttt{duplicate}, and what we get back must be the same thing which was originally \texttt{duplicated}; also, if we \texttt{duplicate} the result of \texttt{duplicate}, this final value cannot depend upon whether we call \texttt{duplicate} for a second time on the \textit{outer} or \textit{inner} layer resulting from the first call to \texttt{duplicate}.\footnote{These laws also show us that just as a monad is a monoid in the category of endofunctors, a comonad is a monoidal endofunctor, under the same category.}

\[\text{duplicate} \circ \text{duplicate} \equiv \text{fmap duplicate} \circ \text{duplicate}\]
The monadic operations (\(\Rightarrow\)) and join may be defined in terms of each other and fmap; the
same is true of their duals, extend and duplicate. In Control.Comonad, we have the following
default definitions, so that defining a Comonad requires specifying only extract and one of
duplicate or extend:

\[
\begin{align*}
\text{duplicate} &= \text{extend } \text{id} \\
\text{extend } f &= \text{fmap } f \circ \text{duplicate}
\end{align*}
\]

5 A Curious Comonadic Connection

From now, let’s call the hypothetical computational Löb’s theorem “lfix” (for Löb-fix). We’ll
only use the already-popularized “loeb” to refer to the function due to Piponi.

Comonads seem like a likely place to search for lfix, not only because their intuition in
terms of contextual computations evokes the behavior of loeb, but also because the type of
the comonadic duplicate matches axiom (4) from K4 modal logic.

\[
\vdash \Box P \rightarrow \Box \Box P \quad \text{axiom (4)} \cong \text{duplicate} :: w \ a \rightarrow w \ (w \ a)
\]

It’s worth noting here that the operations from Comonad are not a perfect match for K4
necessity. In particular, Comonad has nothing to model the distribution axiom, and extract
has a type which does not correspond to a derivable theorem in K4. We’ll reconcile these
discrepancies shortly (see §9).

Indeed, if we browse Control.Comonad, we can find two fixed points with eerily similar
types to the object of our quest.

\[
\begin{align*}
lfix &:: ??? \ w \Rightarrow w \ (w \ a \rightarrow a) \rightarrow w \ a \\
\text{cfix} &:: \text{Comonad } \ w \Rightarrow (w \ a \rightarrow a) \rightarrow w \ a \\
\text{wfix} &:: \text{Comonad } \ w \Rightarrow w \ (w \ a \rightarrow a) \rightarrow a
\end{align*}
\]

The first of these, cfix, comes from Dominic Orchard [18].

comonoid in the category of endofunctors: (1) and (2) are left and right identities, and (3) is co-associativity.
\[
\text{cfix} :: \text{Comonad } w \Rightarrow (w a \rightarrow a) \rightarrow w a \\
\text{cfix } f = \text{extend } f \ (\text{cfix } f)
\]

It’s close to the Löb signature, but not close enough: it doesn’t take as input a \(w\) of anything; it starts with a naked function, and there’s no easy way to wrangle our way past that.

The second, \(w\text{fix}\), comes from David Menendez [17].

\[
\text{wfix} :: \text{Comonad } w \Rightarrow w \ (w a \rightarrow a) \rightarrow a \\
\text{wfix } w = \text{extract } w \ (\text{extend } \text{wfix } w)
\]

It, like \(\text{cfix}\), is missing a \(w\) somewhere as compared with the type of \(l\text{fix}\), but it’s missing a \(w\) on the type of its \textit{result} – and we can work with that. Specifically, using \(\text{extend} :: (w a \rightarrow b) \rightarrow w a \rightarrow w b\), we can define:

\[
\text{possibility} :: \text{Comonad } w \Rightarrow w \ (w a \rightarrow a) \rightarrow w a \\
\text{possibility} = \text{extend } \text{wfix}
\]

In order to test out this \textit{possibility}, we first need to build a comonad with which to experiment.

6 Taping Up the Box

In the original discussion of \textit{loeb}, the most intuitive and instructive example was that of the list functor. This exact example won’t work for \(l\text{fix}\): lists don’t form a comonad because there’s no way to \textit{extract} from the empty list.

Non-empty lists do form a comonad where \textit{extract} \(\equiv\) \textit{head} and \textit{duplicate} \(\equiv\) \textit{init} \(\circ\) \textit{tails}, but this type is too limiting. Because \(\text{extend } f = \text{fmap } f \circ \text{duplicate}\), the context seen by any extended function in the non-empty-list comonad only contains a rightwards view of the structure. This means that all references made inside our \textit{possibility} would have to point rightwards – a step backward in expressiveness from Piponi’s \textit{loeb}, where references can point anywhere in the input \textit{Functor}.
From Gérard Huet comes the *zipper* structure, a family of data types each of which represent a focus and its context within some (co)recursive algebraic data type [10]. Not by coincidence, every zipper induces a comonad [1]. A systematic way of giving a comonadic interface to a zipper is to let `extract` yield the value currently in focus and let `duplicate` “diagonalize” the zipper, such that each element of the duplicated result is equal to the “view” from its position of the whole of the original zipper.

A justification for this comes from the second comonad law, \(\text{fmap extract} \circ \text{duplicate} \equiv \text{id} \). When we diagonalize a zipper, each inner-zipper element of the duplicated zipper is focused on the element which the original zipper held at that position. Thus, when we `fmap extract`, we get back something identical to the original.

A particular zipper of interest is the *list zipper* (sometimes known as a *pointed list*), which contains a focus (a single element) and a context in a list (a pair of lists representing the elements to the left and right of the focus).

Though list zippers are genuine comonads with total comonadic operations, there are desirable functions which are impossible to define for them in a total manner. The possible finitude of the context lists means that we have to explicitly handle the “edge case” where we’ve reached the edge of the context.

To be lazy (in both senses of the word), we can eliminate edges entirely by placing ourselves amidst an endless space, replacing the possibly-finite lists in the zipper’s context with definitely-infinite streams. The `Stream` datatype is isomorphic to a list without the `nil` constructor, thus making its infinite extent (if we ignore `⊥`) certain.\(^6\)

\[
\text{data Stream } a = \text{Cons } a \ (\text{Stream } a)
\]

By crossing two `Streams` and a focus, we get a zipper into a both-ways-infinite stream. This datatype is called a *Tape* after the bidirectionally infinite tape of a Turing machine.\(^7\)

\(^6\)This datatype is defined in the library `Data.Stream`.

\(^7\)For brevity, we use the GHC extension `DeriveFunctor` to derive the canonical `Functor` instance for `Tape`.
data Tape a = Tape { viewL :: Stream a , focus :: a , viewR :: Stream a } deriving Functor

We can move left and right in the Tape by grabbing onto an element from the direction we want to move and pulling ourselves toward it, like climbing a rope.

moveL, moveR :: Tape a → Tape a
moveL (Tape (Cons l ls) c rs) = Tape ls l (Cons c rs)
moveR (Tape ls c (Cons r rs)) = Tape (Cons c ls) r rs

Notice that moveL and moveR are total, in contrast to their equivalents in the case of a pointed finite list.

Tape forms a Comonad, whose instance we can define using the functionality outlined above, as well as an iteration function for building Tapes.

iterate :: (a → a) → (a → a) → a → Tape a
iterate prev next seed =
 Tape (Stream.iterate prev (prev seed))
 seed
 (Stream.iterate next (next seed))

instance Comonad Tape where
 extract = focus
 duplicate = iterate moveL moveR

As with other comonads derived from zippers, duplicate for Tapes is a kind of diagonalization.

7 Taking possibility for a Test Drive

With our newly minted Tape comonad in hand, it’s time to kick the tires on this new possibility. To start, let’s first try something really simple: counting to 10000.
main = print ≪ Stream.take 10000 ≪ viewR ≪ possibility ≪
Tape (Stream.repeat (const 0)) -- zero left of origin
 (const 0) -- zero at origin
 (Stream.repeat -- right of origin:
 (succ ≪ extract ≪ moveL)) -- 1 + leftward value

Notice that the pattern of recursion in the definition of this Tape would be impossible using
the non-empty-list comonad, as elements extending rightward look to the left to determine
their values.

Enough talk – let’s run it!...........

........ Unfortunatley, that sets our test drive off to quite the slow start. On my machine,\(^8\)
this program takes a full 13 seconds to print the number 10000. To understand better how
abysmally slow that is, let’s compare it to a naïve list-based version of what we’d hope is
roughly the same program:

main = print $ take 10000 [1..]

This program takes almost no time at all – as well it should! Increasing the upper bound by
a factor of a hundred is enough for it to take more easily measurable time, which indicates
that the Tape-based counting program is slower than the list-based one by a factor of around
650. Your results may vary a bit of course, but not dramatically enough to call this kind of
performance acceptable for all but the most minuscule applications.

This empirical sluggishness was how I first discovered the inadequacy of possibility for
efficient computation, but we can rigorously justify why it necessarily must be so slow and
mathematically characterize just how slow that is.

8 Laziness sans Sharing \(\simeq\) Molasses in January

Recall the definitions of wfix and possibility:

\(^8\)Compiled with GHC 7.8.3 with \(-O2\) optimization, run on OS X 10.10.2 with a 2 GHz Intel Core i7 (I7-2635QM)
wfix :: Comonad \(w \Rightarrow w (w a \rightarrow a) \rightarrow a \)
wfix \(w \) = extract \(w \) (extend wfix \(w \))

possibility :: Comonad \(w \Rightarrow w (w a \rightarrow a) \rightarrow w a \)
possibility = extend wfix

Rephrasing \(wfix \) in terms of an explicit fixed-point and subsequently inlining the definitions of \(\text{fix} \) and \(\text{extend} \), we see that

\[
wfix \equiv wf \quad \text{where} \quad wf =
\lambda w \rightarrow \text{extract} \ w (\text{fmap} \wf (\text{duplicate} \ w))
\]

In this version of the definition, it’s more clear that \(wfix \) does not share the eventual fixed point it computes in recursive calls to itself. The only sharing is of \(wfix \) itself as a function.

In practical terms, this means that when evaluating \(\text{possibility} \), every time a particular function \(w a \rightarrow a \) contained in the input \(w (w a \rightarrow a) \) makes a reference to another part of the result structure \(w a \), the entire part of the result demanded by that function must be recomputed. In the counting benchmark above, this translates into an extra linear factor of time complexity in what should be a linear algorithm.

Worse still, in recurrences with a branching factor higher than one, this lack of sharing translates not merely into a linear cost, but into an exponential one. For example, each number in the Fibonacci sequence depends upon its two predecessors, so the following program runs in time exponential to the size of its output.

\[
\text{main} = \text{print} \circ \text{Stream.take} \ n \circ \text{viewR} \circ \text{possibility} \$
\quad \text{Tape} \ (\text{Stream.repeat} \ (\text{const} \ 0))
\quad \ (\text{const} \ 1)
\quad (\text{Stream.repeat} \ \$ \ \text{do}
\quad \quad a \leftarrow \text{extract} \circ \text{moveL}
\quad \quad b \leftarrow \text{extract} \circ \text{moveL} \circ \text{moveL}
\quad \quad \text{return} \ \$ \ a + b)
\quad \text{where} \ n = 30 \quad -- \text{increase this number at your own peril}
\]

\(^9\)This code uses do-notation with the reader monad \((\rightarrow)\ r\) to express the function summing the two elements left of a Tape’s focus.
This is just as exponentially slow as a naïve Fibonacci calculation in terms of explicit recursion with no memoization.

9 Finding Some Closure

Are we finished? Is our possibility really the most efficient computational translation of Löb’s theorem we can create? It would be disappointing if so, but luckily, as these rhetorical questions and the spoiler-laden section header indicate, it is not so!

A step back is in order to the guiding Curry-Howard intuition which brought us here. Since Löb’s theorem is provable in K4 modal logic augmented with modal fixed points, we tried to find a typeclass which mirrored K4’s axioms, which we could combine with the fix combinator to derive our fix. We identified Comonad’s duplicate as axiom (4) of K4 logic and derived a fixed point which used this, the comonadic extract, and the functoriality of □. As mentioned before, there’s something fishy about this construction.

Firstly, K4 modal logic has nothing to correspond to extract :: Comonad w ⇒ w a → a. When we add to K4 the axiom □A → A (usually called (T) in the literature) to which extract corresponds, we get a different logic; namely, S4 modal logic. Unfortunately, axiom (T) when combined with Löb’s theorem leads to inconsistency: necessitation upon (T) gives us ∀A.□(□A → A), then Löb’s theorem gives us ∀A.□A, and finally, applying (T) yields ∀A.A: an inconsistent proof that every statement is true.

As a result, no good translation of Löb’s theorem can use extract or anything derived from it, as a proof using inconsistent axioms is no proof at all.10 Notably, the wfix we used in defining possibility must be derived in part from extract. If its slow performance didn’t already dissuade us, this realization certainly disqualifies possibility from our search.

The second mismatch between K4 and Comonad is the latter’s absence of something akin to the distribution axiom. Comonad gives us no equivalent of □(A → B) → □A → □B.

10 What’s really needed is a semi-comonad without counit (extract). The programming convenience of extract, however, makes it worthwhile to stick with Comonad, but with a firm resolution not to use extract in our lfix.
The distribution axiom should look familiar to Haskellers. Squint slightly, and it looks identical to the signature of the `Applicative` “splat” operator (⊛).\(^{11}\) Compare:

\[(⊛) :: \text{Applicative } f \Rightarrow f (a \rightarrow b) \rightarrow f\ a \rightarrow f\ b\]

distribution axiom: \(\Box (A \rightarrow B) \rightarrow \Box A \rightarrow \Box B\)

At first glance, this seems quite promising – we might hastily conclude that the constraint matching the modal \(\Box\) is that of an `Applicative Comonad`. But while (⊛) is all well and good, the other method of `Applicative` ruins the deal: `pure` has exactly the type we can’t allow into the \(\Box\): \(\text{Applicative} f \Rightarrow a \rightarrow f\ a\), which corresponds to the implication \(A \rightarrow \Box A\), which we’ve been trying to escape from the start!

Hope need not be lost: another algebraic structure fits the bill perfectly: the *closed comonad*. In Haskell, the `ComonadApply` typeclass models the closed comonad structure (at least up to values containing \(\bot\)).\(^{12}\)

\[
\text{class Comonad } w \Rightarrow \text{ComonadApply } w \text{ where } \\
\hspace{1cm} (.getOrElse) :: w (a \rightarrow b) \rightarrow w\ a \rightarrow w\ b
\]

`ComonadApply` lacks a unit like `Applicative`’s `pure`, thus freeing us from unwanted pointedness.\(^{13}\)

10 Putting the Pieces Together

Now that we’ve identified `ComonadApply` as a slightly-overpowered match for the \(\Box\) modality, it’s time to put all the pieces together. Because `Functor` is a superclass of `Comonad`, which itself is a superclass of `ComonadApply`, we have all the methods of these three classes at our

\(^{11}\)What is typeset here as (⊛) is spelled in ASCII Haskell as (««»).

\(^{12}\)What is typeset here as (.getOrElse) is spelled in ASCII Haskell as (««@»).

\(^{13}\)A brief detour into abstract nonsense: the structure implied by `ComonadApply` is, to quote the documentation, “a strong lax symmetric semi-monoidal comonad on the category Hask of Haskell types,” [11]. Someone familiar with particular pieces of literature on modal logic could have taken a short-cut around a few wrong turns, as it turns out that a monoidal comonad is equivalent to a closed comonad in a Cartesian-closed category (such as that of Haskell types), and this structure is exactly what’s necessary to categorically model intuitionistic S4 modal logic [4][2].
disposal. Somehow, we need to assemble our function $lfix$ from a combination of these specific parts:\footnote{Note the conspicuous absence of $\texttt{extract}$, as our faithfulness to K4 prevents us from using it in our translation of the proof.}

\[
\begin{align*}
\textsc{fix} & \quad :: (a \to a) \to a \\
\textsc{fmap} & \quad :: \text{Functor } \mathcal{W} \Rightarrow (a \to b) \to \mathcal{W} a \to \mathcal{W} b \\
\textsc{duplicate} & \quad :: \text{Comonad } \mathcal{W} \Rightarrow \mathcal{W} a \to \mathcal{W} (\mathcal{W} a) \\
\textsc{(\odot)} & \quad :: \text{ComonadApply } \mathcal{W} \Rightarrow \mathcal{W} (a \to b) \to \mathcal{W} a \to \mathcal{W} b
\end{align*}
\]

One promising place to start is with \textsc{fix}. We know from experience with \textsc{wfix} that we’ll want to share the result of $lfix$ in some recursive position, or we’ll pay for it asymptotically later. If we set up our function as below, we can guarantee that we do so.

\[
lfix :: \text{ComonadApply } \mathcal{W} \Rightarrow \mathcal{W} (w a \to a) \to \mathcal{W} a
\]

GHC will gladly infer for us that the hole (_) above has type $w a \to w a$.15 If we didn’t have typed holes, we could certainly see why for ourselves by “manual type inference”: \textsc{fix}, specialized from $(a \to a) \to a$ to return a result of type $w a$, must take as input something of type $w a \to w a$. We can elide such chains of reasoning below – I prefer to drive my type inference on automatic.

We might guess that, like in \textsc{cfix}, we have to $\textsc{duplicate}$ our input in each recursive call:

\[
lfix f = \text{fix (_} \circ \text{duplicate)}
\]

Further, since we haven’t yet used f in the right hand side of our definition, a good guess for its location is as an argument to the unknown (_).

\[
lfix f = \text{fix (_} f \circ \text{duplicate)}
\]

This new hole is of the type $w (w a \to a) \to w (w a) \to w a$, a specialization of the type of the ComonadApply operation, (\odot). Plugging it in finally yields the fix for which we’ve been searching.

14This “typed hole” inference is present in GHC versions 7.8 and greater.
The term \(\text{lfix} \) checks many boxes on the list of criteria for a computational interpretation of Löb’s theorem. Comparing it against a genuine proof of the theorem in its native habitat due to Mendelson [16] shows that \(\text{lfix} \) makes use of a nearly isomorphic set of prerequisites: \(\text{duplicate} \) (axiom 4), \((\Box \ast) \) (distribution axiom), and \(\text{fix} \), which as used here roughly corresponds to the role of modal fixed points in the proof.\(^{16}\)

Mendelson doesn’t prove Löb’s theorem in the exact form we’ve seen; rather, he proves \((\Box P \rightarrow P) \rightarrow P \). Yet this is equivalent to the version we’ve seen: to raise everything “up a box,” we need to apply the necessitation and distribution rules to once again find that \(\Box(\Box P \rightarrow P) \rightarrow \Box P \).

A quick summary of modal fixed points: If a logic has modal fixed points, that means we can take any formula with one free variable \(F(x) \) and find some other formula \(\Psi \) such that \(\Psi \iff F(\Box \Psi) \). The particular modal fixed point required by Mendelson’s proof is of the form \(\mathcal{L} \iff (\Box \mathcal{L} \rightarrow \mathcal{C}) \), for some fixed \(\mathcal{C} \).

There is a slight discrepancy between the concept of modal fixed points and value-level fixed points in Haskell. The existence of a modal fixed point is an assumption about recursive propositions – and thus, corresponds to the existence of a certain kind of recursive type. By contrast, the Haskell term \(\text{fix} \) expresses recursion at the value level, not the type level. This mismatch is, however, only superficial. By Curry’s fixed point theorem, we know that value-level general recursion is derivable from the existence of recursive types. Similarly, \(^{16}\)Notably, we don’t need to use the necessitation rule in this proof, which means that we can get away with a semi-monoidal comonad ala \(\text{ComonadApply} \).
Mendelson’s proof makes use of a restricted family of recursive propositions (propositions with modal fixed points) to give a restricted kind of “modal recursion.” By using fix rather than deriving analogous functionality from a type-level fixed point, we’ve streamlined this step in the proof using Haskell’s fix as a mild sleight of hand. Consider the following term and its type, which when applied to \((f \otimes)\), yields our ifix:

\[
\lambda g \rightarrow \text{fix} \ (g \circ \text{duplicate}) \\
:: \text{Comonad} \ w \Rightarrow (w \ (w \ a) \rightarrow w \ a) \rightarrow w \ a
\]

Because our ifix is lifted up by a box from Mendelson’s proof, the fixed point we end up taking matches the form \(\Box \mathcal{L} \iff (\Box \Box \mathcal{L} \rightarrow \Box \mathcal{L})\), which matches the type of the term above.

In Haskell, not every expressible (modal) fixed point has a (co)terminating solution. Just as in the case of loeb, it’s possible to use ifix to construct cyclic references, and just as in the case of loeb, any cycles result in \(\perp\). This is exactly as we would expect for a constructive proof of Löb’s theorem: if the fixed point isn’t uniquely defined, the premises of the proof (which include the existence of a fixed point) are bogus, and thus we can prove falsity \(\perp\).

Another way of seeing this: the hypothesis of Löb’s theorem \(\Box (\Box P \rightarrow P)\) is effectively an assumption that axiom (T) holds not in general, but just for this one proposition \(P\). Indeed, the inputs to ifix which yield fully productive results are precisely those for which we can extract a non-bottom result from any location (i.e. those for which axiom (T) always holds). Any way to introduce a cycle to such a recurrence must involve extract or some specialization of it – without it, functions within the recurrence can only refer to properties of the whole “container” (such as length) and never to specific other elements of the result. Just as we can (mis)use Functor as a strong functor (noted in §3), we can (mis)use Comonad’s extract to introduce nontermination. In both cases, the type system does not prevent us from stepping outside the laws we’ve set out for ourselves; it’s our responsibility to use them safely – but if we do, ifix’s logical analogy does hold.
12 A Zippier Fix

As a result of dissecting Mendelson’s proof, we’ve much greater confidence this time around in our candidate term lfix and its fidelity to the modality. In order to try it out on the previous example, we first need to give an instance of ComonadApply for the Tape comonad. But what should that instance be?

The laws which come with the ComonadApply class, those of a symmetric semi-monoidal comonad, are as follows:

\[
\begin{align*}
\circ \ast u \ast v \ast w & \equiv u \ast (v \ast w) \quad (1) \\
\text{extract} (p \ast q) & \equiv \text{extract} p \text{ (extract} q) \quad (2) \\
\text{duplicate} (p \ast q) & \equiv (\ast) \ast \text{duplicate} p \ast \text{duplicate} q \quad (3)
\end{align*}
\]

In the above, we use the infix fmap operator: \((\ast) = \text{fmap}.\)

Of particular interest is the third law, which enforces a certain structure on the \((\ast)\) operation. Specifically, the third law is the embodiment for ComonadApply of the symmetric in “symmetric semi-monoidal comonad.” It enforces a distribution law which can only be upheld if \((\ast)\) is idempotent with respect to cardinality and shape: if some \(r\) is the same shape as \(p \ast q\), then \(r \ast p \ast q\) must be the same shape as well [20]. For instance, the implementation of \((\ast)\) for lists – a computation with the shape of a Cartesian product and thus an inherent asymmetry – would fail the third ComonadApply law if we used it to implement \((\ast)\) for the (non-empty) list comonad.\(^{18}\)

We functional programmers have a word for operations like this: \((\ast)\) must have the structure of a zip. It’s for this reason that Uustalu and Vene define a ComonadZip class, deriving the equivalent of ComonadApply from its singular method \(czip :: (\text{ComonadZip } w) \Rightarrow w\ a \rightarrow w\ b \rightarrow w\ (a, b)\) [21]. The czip and \((\ast)\) operations may be defined only in terms of one another and fmap – their two respective classes are isomorphic. Instances of ComonadApply

\(^{17}\)What is typeset here as \((\ast)\) is spelled in ASCII Haskell as \((<<>)\).

\(^{18}\)Incidentally, for a type which is both Applicative and ComonadApply, it should always be that \((\ast) \equiv (\otimes)\).
generally have fewer possible law-abiding implementations than do those of Applicative because they are thus constrained to be “zippy.”

This intuition gives us the tools we need to write a proper instance of ComonadApply first for Streams...

\[
\text{instance ComonadApply Stream where} \\
\text{Cons } x \; x s \odot Cons \; x' \; x s' = \\
\text{Cons } (x \; x') \; (xs \odot xs')
\]

...and then for Tapes, relying on the Stream instance we just defined to properly zip the component Streams of the Tape.

\[
\text{instance ComonadApply Tape where} \\
\text{Tape } ls \; c \; rs \odot \text{Tape } ls' \; c' \; rs' = \\
\text{Tape } (ls \odot ls') \; (c \; c') \; (rs \odot rs')
\]

With these instances in hand (or at least, in scope), we can run the silly count-to-10000 benchmark again. This time, it runs in linear time with only a small constant overhead beyond the naïve list-based version.

In this new world, recurrences with a higher branching factor than one no longer exhibit an exponential slowdown, instead running quickly by exploiting lfix’s the optimal sharing. If we rewrite the Fibonacci example noted earlier to use lfix, it’s extremely quick – on my machine, it computes the 10000th element of the sequence in 0.75 seconds. In this example, lfix has essentially identical performance to that of an equivalent program derived from the well-known “one-liner” memoizing Fibonacci sequence:

\[
\text{main } = \text{print } \circ \text{take } 10000 \$ \\
\text{fix } \$ \lambda \text{fibs } \rightarrow \text{0 : 1 : zipWith } (+) \text{fibs } (\text{tail } \text{fibs})
\]

This is a point worth re-emphasizing: the “zip” operation enabled by ComonadApply is the source of lfix’s computational “zippiness.” By allowing the eventual future value of the
comonadic result \(w \ a \) to be shared by every recursive reference, \(\text{lfix} \) ensures that every element of its result is computed at most once.\(^{19}\)

13 Building a Nest in Deep Space

The only comonad we’ve examined in depth so far is the one-dimensional \text{Tape} zipper, but there is a whole world of comonads out there. Piponi’s original post is titled, “From Löb’s Theorem to Spreadsheet Evaluation,” and as we’ve seen, \text{loeb} on the list functor looks just like evaluating a one-dimensional spreadsheet with absolute references. Likewise, \text{lfix} on the \text{Tape} comonad looks just like evaluating a one-dimensional spreadsheet with relative references.

So far, all we’ve seen are analogues to one-dimensional “spreadsheets” – but spreadsheets traditionally have \textit{two} dimensions. We could build a two-dimensional \text{Tape} to represent two-dimensional spreadsheets – nest a \text{Tape} within another \text{Tape} and we’d have made a two-dimensional space to explore – but this seems unsatisfactory.

In his novel \textit{The Gods Themselves}, Isaac Asimov expresses a similar feeling \[3\]:

The number two is ridiculous and can’t exist.

\[\ldots \]

It could make sense… that our own Universe is the only one that can exist… Once, however, evidence arises that there is a second Universe as well… it becomes absolutely ridiculous to suppose that there are two and only two Universes. If a second Universe can exist, then an infinite number can. Between one and the infinite in cases such as these, there are no sensible numbers. Not only two, but any finite number, is ridiculous and can’t exist.

In other words, as Willem van der Poel apocryphally put it, we would do well to heed the “zero, one, infinity” rule. Why make a special case for two-dimensions when we can talk about \(n \in \mathbb{N} \) dimensions?

The \textbf{Compose} type\(^{20}\) represents the composition of two types \(f \) and \(g \), each of kind \(* \rightarrow * \):

\(^{19}\)It is worth noting that \text{lfix} exhibits this lazy memoization only if the underlying comonad is “structural.” Haskell does not automatically memoize functions but does memoize data structures due to its lazy evaluation strategy. As a result, the comonad \textbf{data} \(\text{ZTape} \ a = \text{ZTape} \ (\text{Integer} \rightarrow \ a) \), though isomorphic to \text{Tape}, does not get the full benefit of \text{lfix}'s performance boost, while \text{Tape} does.

\(^{20}\)This type is canonically located in \textbf{Data.Functor.Compose}.

21
\[
\text{newtype Compose } f \ g \ a = \\
\text{Compose } \{ \text{getCompose} :: f \ (g \ a) \}
\]

We can generalize \text{Compose} from the “ridiculous” \textit{two} to a more satisfying \textit{n} using a GADT indexed by a type-level snoc-list of the composed types contained: 21

\[
\text{data Flat } (x :: \ast \to \ast) \\
\text{data Nest } (o :: \ast) (i :: \ast \to \ast) \\
\text{data Nested } fs \ a \ \text{where} \\
\quad \text{Flat} :: f \ a \to \text{Nested} (\text{Flat} f) \ a \\
\quad \text{Nest} :: \text{Nested} fs \ (f \ a) \to \text{Nested} (\text{Nest} \ fs \ f) \ a
\]

To find an intuition for how \text{Nested} operates, observe how the type changes as we add \text{Nest} constructors:

\[
[\text{Just True}] :: [\text{Maybe Bool}] \\
\text{Flat} [\text{Just True}] :: \text{Nested} (\text{Flat} []) (\text{Maybe} \ \text{Bool}) \\
\text{Nest} (\text{Flat} [\text{Just True}]) :: \text{Nested} (\text{Nest} (\text{Flat} [])) \text{ Maybe} \ \text{Bool}
\]

The only way to initially make some type \text{Nested} is to first call the \text{Flat} constructor on it. Subsequently, further outer layers of structure may be unwrapped from the type using the \text{Nest} constructor, which moves a layer of type application from the second parameter to the snoc-list in \text{Nested}’s first parameter.

In this way, while \text{Compose} canonically represents the composition of types only up to associativity (for some \(f\), \(g\), and \(h\), \(\text{Compose } f \ (\text{Compose } g \ h) \equiv \text{Compose} \ (\text{Compose } f \ g) \ h\)), the \text{Nested} type gives us a single canonical representation by removing the choice of left-associativity.

While it’s trivial to define a \text{getCompose} accessor for the \text{Compose} type, in order to provide the same functionality for \text{Nested}, we need to use a closed type family to describe the type of unwrapping one layer of a \text{Nested} constructor.

21Instead of letting \text{Flat} and \text{Nest} inhabit a new kind (via a lifted sum type), we let them be void types of kind * so we can pun on the type and value constructor names. If GHC had kind-declarations without associated types, we could have increased kind-safety as well as this kind of wordplay.
type family UnNest x where
 UnNest (Nested (Flat f) a) = f a
 UnNest (Nested (Nest fs f) a) = Nested fs (f a)

unNest :: Nested fs a → UnNest (Nested fs a)
unNest (Flat x) = x
unNest (Nest x) = x

Having wrought this new type, we can put it to use, defining once and for all how to compose an arbitrary heap of comonadic types, permitting us to voyage out and discover spreadsheets in dimensions as high as our human brains care to comprehend.

14 Introducing Inductive Instances

The Nested type enables us to encapsulate inductive patterns in typeclass definitions for composed types. By giving two instances for a given typeclass – the base case for Nested (Flat f), and the inductive case for Nested (Nest fs f) – we can instantiate a typeclass for all Nested types, no matter how deeply composed they are.

The general design pattern illustrated here is a powerful technique to write pseudo-dependently-typed Haskell code: model the inductive structure of some complex family of types in a GADT, and then instantiate typeclass instances which perform ad-hoc polymorphic recursion on that datatype.

For Nested’s Functor instance, the base case Nested (Flat f) relies upon f to be a Functor; the inductive case, Nested (Nest fs f) relies on f as well as Nested fs to be Functors.

instance Functor f ⇒ Functor (Nested (Flat f)) where
 fmap f = Flat ∘ fmap ∘ unNest

instance (Functor f, Functor (Nested fs)) ⇒
 Functor (Nested (Nest fs f)) where
 fmap f = Nest ∘ fmap (fmap f) ∘ unNest

With that, arbitrarily large compositions of Functors may now themselves be Functors – as we know to be true.
In order to use the Nested type to derive an inductive definition for \(n \)-dimensional “spreadsheets,” we need more than Functor, though – we can tie Löb’s knot only if we also have Comonad and ComonadApply.

As with Functor, defining the base-case Comonad instance – that for \(\text{Nested} (\text{Flat} f) \) – is relatively straightforward; we lean on the Comonad instance of the wrapped type, unwrapping and rewrapping as necessary.

\[
\text{instance Comonad } f \Rightarrow \text{Comonad} (\text{Nested} (\text{Flat} f)) \text{ where} \\
\quad \text{extract} = \text{extract} \circ \text{unNest} \\
\quad \text{duplicate} = \text{fmap} \text{ Flat} \circ \text{Flat} \\
\quad \circ \text{ duplicate} \\
\quad \circ \text{ unNest}
\]

The inductive case is trickier. To duplicate something of type \(\text{Nested} (\text{Nested} (\text{Flat} f)) \) \(a \), we need to create something of type \(\text{Nested} (\text{Nested} (\text{Nested} (\text{Flat} f)) \) \((\text{Nested} (\text{Nested} (\text{Flat} f)) \) \(a \).

Our first step must be to unNest, as we can’t do much without looking inside the Nested thing. This gives us a \(\text{Nested} \) \(f \) \((a) \). If \(f \) is a Comonad, we can now \text{fmap duplicate} to duplicate the newly revealed inner layer, giving us a \(\text{Nested} \) \(f \) \((f (a)) \). If (inductively) \(\text{Nested} \) \(f \) \(s \) is a Comonad, we can also duplicate the outer layer to get a \(\text{Nested} \) \(f \) \((\text{Nested} \) \(f \) \((f (a)) \)).

Here is where, with merely our inductive Comonad constraints in hand, we get stuck. We need to distribute \(f \) over \(\text{Nested} \) \(f \) \(s \), but we have no way to do so with only the power we’ve given ourselves.

In order to compose comonads, we need to add another precondition to what we’ve seen so far: distributivity.\(^{22}\)

\[
\text{class Functor } g \Rightarrow \text{Distributive} g \text{ where} \\
\quad \text{distribute} :: \text{Functor} f \Rightarrow f (g a) \rightarrow g (f a)
\]

Haskellers might recognize this as the almost-dual to the more familiar \text{Traversable} class, where \text{distribute} is the dual to \text{sequenceA}. Both \text{Traversable} and \text{Distributive} enable us to define

\(^{22}\)This class may be found in Data.Distributive.
a function of the form \(f \circ g \circ a \rightarrow g \circ f \circ a \), but a Traversable \(f \) constraint means we can push some fixed \(f \) beneath an arbitrary Applicative, while a Distributive \(g \) constraint means we can pull some fixed \(g \) out from underneath an arbitrary Functor.

With only a Comonad constraint on all the types in a Nested, we can duplicate the inner and outer layers as above. Now, we need only to distribute to swap the middle two layers of what have become four, and re-wrap the results in Nested’s constructors to inject the result back into the Nested type. And with that, we have our inductive-case instance for Nested comonads:

```haskell
instance (Comonad f, Comonad (Nested fs),
         Functor (Nested (Nest fs f)),
         Distributive f) ⇒
         Comonad (Nested (Nest fs f)) where
  extract = extract ∘ extract ∘ unNest
  duplicate = fmap Nest ∘ Nest
           ∘ fmap distribute
           ∘ duplicate
           ∘ fmap duplicate
           ∘ unNest
```

With this instance and the experience we’ve gained in deriving it, it’s smooth sailing to define ComonadApply in the base and inductive cases for Nested:

```haskell
instance ComonadApply f ⇒
         ComonadApply (Nested (Flat f)) where
  Flat f ⨿ Flat x = Flat (f ⨿ x)

instance (ComonadApply f,
           ComonadApply (Nested fs),
           Distributive f) ⇒
         ComonadApply (Nested (Nest fs f)) where
  Nest f ⨿ Nest x = Nest (((⨿) ⨿ f ⨿ x)
```

Of course, we can’t very well use such instances without Distributive instances for the
base types we intend to Nest. It’s easier to depend on a constraint than it is to fulfill it. To elucidate how to distribute, let’s turn again to our trusty comonad, the Tape.

Formally, a Distributive instance for a functor g witnesses the property that g is a representable functor preserving all limits – that is, it’s isomorphic to $(\to) r$ for some r [12]. We know that any Tape a, representing a bidirectionally infinite sequence of as, is isomorphic to functions of type $\text{Integer} \to a$ (though with potentially better performance for certain operations). Therefore, Tapes must be Distributive, but we haven’t concluded this in a particularly constructive way. How can we actually build such an instance?

In order to distribute Tapes, we first should learn how to unfold them. Given the standard unfold over Streams...

$$\text{Stream.unfold} :: (c \to (a, c)) \to c \to \text{Stream} a$$

...we can build an unfold for Tapes:

$$\text{unfold} :: (c \to (a, c)) -- \text{leftwards unfolding function}$$
$$(c \to a) -- \text{function from seed to focus value}$$
$$(c \to (a, c)) -- \text{rightwards unfolding function}$$
$$c -- \text{seed}$$
$$\to \text{Tape} a$$

$$\text{unfold prev center next seed} =$$
$$\text{Tape} (\text{Stream.unfold prev seed})$$
$$(\text{center seed})$$
$$(\text{Stream.unfold next seed})$$

With this unfold, we can define a distribute for Tapes.\(^{23}\)

$$\text{instance Distributive Tape where}$$
$$\text{distribute} =$$
$$\text{unfold} (\text{fmap} (\text{extract} \circ \text{moveL}) \&\& \text{fmap} \text{moveL})$$
$$\text{(fmap extract)}$$
$$\text{(fmap} (\text{extract} \circ \text{moveR}) \&\& \text{fmap} \text{moveR})$$

\(^{23}\)We define the “fanout” operator as $f \&\& g = \lambda x \to (f x, g x)$. This handy combinator is borrowed from Control.Arrow.
This definition of `distribute` unfolds a new `Tape` outside the `Functor`, eliminating the inner `Tape` within it by `fmap`ping movement and extraction functions through the `Functor` layer. Notably, the shape of the outer `Tape` we had to create could not possibly depend on information from the inner `Tape` locked up inside of the \(f \) (\(Tape \ a \)). This is true in general: in order for us to be able to `distribute`, every value of our `Distributive` \(g \) must have a fixed shape and no extra information to replicate beyond its payload of \(a \) values [12].

15 Asking for Directions in Higher Dimensions

Although we now have the type language to describe arbitrary-dimensional closed comonads, we don’t yet have a good way to talk about movement within these dimensions. The final pieces to the puzzle are those we need to refer to relative positions within these nested spaces.

We’ll represent an \(n \)-dimensional relative reference as a list of coordinates indexed by its length \(n \) using the conventional construction for length-indexed vectors via GADTs.

```haskell
data Nat = S Nat | Z
infixr :::
data Vec (n :: Nat) (a :: *) where
    Nil :: Vec Z a
    (:::) :: a -> Vec n a -> Vec (S n) a
```

A single relative reference in one dimension is a wrapped `Int` . . .

```haskell
newtype Ref = Ref { getRef :: Int }
```

. . . and an \(n \)-dimensional relative coordinate is an \(n \)-vector of these:

```haskell
type Coord n = Vec n Ref
```

We can combine together two different Coords of potentially different lengths by adding the corresponding components and letting the remainder of the longer dangle off the end.
This preserves the understanding that an n-dimensional vector can be considered as an m-dimensional vector ($n \leq m$) where the last $m - n$ of its components are zero.

In order to define this heterogeneous vector addition function ($\&$), we need to give a type to its result in terms of a type-level maximum operation over natural numbers.

```
type family Max n m where
  Max (S n) (S m) = S (Max n m)
  Max n Z = n
  Max Z m = m

(&) :: Coord n → Coord m → Coord (Max n m)
(Ref q ::: qs) & (Ref r ::: rs) = Ref (q + r) ::: (qs & rs)
qs & Nil = qs
Nil & rs = rs
```

The way the zip operation in ($\&$) handles extra elements in the longer list means that we should consider the first element of a Coord to be the distance in the first dimension. Since we always combine from the front of a vector, adding a dimension constitutes tacking another coordinate onto the end of a Coord.

Keeping this in mind, we can build convenience functions for constructing relative references in those dimensions we care about.

```
type Sheet1 = Nested (Flat Tape)
rightBy, leftBy :: Int → Coord (S Z)
rightBy x = Ref x ::: Nil
leftBy = rightBy ∘ negate

type Sheet2 = Nested (Nest (Flat Tape) Tape)
belowBy, aboveBy :: Int → Coord (S (S Z))
belowBy x = Ref 0 ::: Ref x ::: Nil
aboveBy = belowBy ∘ negate

type Sheet3 = Nested (Nest (Nest (Flat Tape) Tape) Tape)
outwardBy, inwardBy :: Int → Coord (S (S (S Z)))
outwardBy x = Ref 0 ::: Ref 0 ::: Ref x ::: Nil
inwardBy = outwardBy ∘ negate
```
We can continue this pattern *ad infinitum* (or at least, *ad* some very large *finitum*), and the whole thing could easily be automated via Template Haskell, should we desire.

We choose here the coordinate convention that the positive directions, in increasing order of dimension number, are right, below, and inward; the negative directions are left, above, and outward. These names are further defined to refer to unit vectors in their respective directions.

An example of using this tiny language: the coordinate specified by `right & aboveBy 3 :: Coord (S (S Z))` refers to the selfsame relative position indicated by reading it as English.

A common technique when designing a domain specific language is to separate its abstract syntax from its implementation. This is exactly what we’ve done – we’ve defined how to *describe* relative positions in *n*-space; what we have yet to do is *interpret* those coordinates.

16 Following Directions in Higher Dimensions

Moving about in one dimension requires us to either move left or right by the absolute value of a reference, as determined by its sign:

```haskell
tapeGo :: Ref -> Tape a -> Tape a
tapeGo (Ref r) =
  foldr (◦) id $ replicate (abs r) (if r < 0 then moveL else moveR)
```

Going somewhere based on an *n*-dimensional coordinate means taking that coordinate and some *Tape* of at least that number of dimensions, and moving around in it appropriately.

```haskell
class Go n t where
go :: Coord n -> t a -> t a
```

We can go nowhere no matter where we are:
instance Go Z (Nested ts) where go = const id

Going somewhere in a one-dimensional Tape reduces to calling the underlying tapeGo function:

instance Go (S Z) (Nested (Flat Tape)) where
go (r ::: _) (Flat t) = Flat (tapeGo r t)

As usual, it’s the inductive case which requires more consideration. If we can move in \(n - 1 \) dimensions in an \((n - 1)\)-dimensional Tape, then we can move in \(n \) dimensions in an \(n \)-dimensional Tape:

instance (Go n (Nested ts), Functor (Nested ts)) ⇒
 Go (S n) (Nested (Nest ts Tape)) where
go (r ::: rs) t =
Nest ◦ go rs ◦ fmap (tapeGo r) ◦ unNest $ t

Notice how this (polymorphically) recursive definition treats the structure of the nested Tapes: the innermost Tape always corresponds to the first dimension, and successive dimensions correspond to Tapes nested outside of it. In each recursive call to go, we unwrap one layer of the Nested type, revealing another outer layer of the contained type, to be accessed via fmap (tapeGo r).

In an analogous manner, we can also use relative coordinates to specify how to slice out a section of an \(n \)-dimensionally Nested Tape, starting at our current coordinates. The only twist is that we need to use an associated type family to represent the type of the resultant \(n \)-nested list.

tapeTake :: Ref → Tape a → [a]
tapeTake (Ref r) t =
 focus t : S.take (abs r) (view t)
 where view = if r < 0 then viewL else viewR

class Take n t where
type ListFrom t a
take :: Coord n → t a → ListFrom t a
instance Take (S Z) (Nested (Flat Tape)) where
 type ListFrom (Nested (Flat Tape)) a = [a]
 take (r ::: _) (Flat t) = tapeTake r t

instance (Functor (Nested ts), Take n (Nested ts)) ⇒
 Take (S n) (Nested (Nest ts Tape)) where
 type ListFrom (Nested (Nest ts Tape)) a =
 ListFrom (Nested ts) [a]
 take (r ::: rs) t =
 take rs ◦ fmap (tapeTake r) ◦ unNest $ t

17 New Construction in Higher Dimensions

To use an analogy to more low-level programming terminology, we’ve now defined how to
peek at Nested Tapes, but we don’t yet know how to poke them. To modify such structures,
we can again use an inductive typeclass construction. The interface we want should take an
n-dimensionally nested container of some kind, and insert its contents into a given nested
Tape of the same dimensionality. In other words:

 class InsertNested ls ts where
 insertNested :: Nested ls a → Nested ts a → Nested ts a

It’s not fixed from the outset which base types have a reasonable semantics for insertion into
an n-dimensionally nested space. So that we can easily add new insertable types, we’ll split
out one-dimensional insertion into its own typeclass, InsertBase, and define InsertNested’s
base case in terms of InsertBase.

 class InsertBase l t where
 insertBase :: l a → t a → t a

An instance of InsertBase for some type l means that we know how to take an l a and insert
it into a t a to give us a new t a. Its instance for one-directionally extending types is
right-biased by convention.
instance InsertBase [] Tape where
 insertBase [] t = t
insertBase (x : xs) (Tape ls c rs) =
 Tape ls x (Stream.prefix xs (Cons c rs))

instance InsertBase Stream Tape where
 insertBase (Cons x xs) (Tape ls _ _) = Tape ls x xs

instance InsertBase Tape Tape where
 insertBase t _ = t

Now we’re in a better position to define the dimensional induction necessary to insert \(n \)-nested things into \(n \)-nested Tapes. The base case relies on insertBase, as expected:

\[
\text{instance } \text{InsertBase } l t \Rightarrow \\
\text{InsertNested } (\text{Flat } l) (\text{Flat } \text{Tape}) \text{ where}\\
\text{insertNested } (\text{Flat } l) (\text{Flat } t) = \text{Flat } (\text{insertBase } l t)
\]

The trick in the recursive case is to generate a Nested structure full of functions which know how to insert the relevant elements into a given Nested \(t \), and then to zip together that structure with the \(t \) to which they apply, using the (□) operation to do so.

\[
\text{instance } (\text{InsertBase } l t, \text{InsertNested } ls ts, \\
\text{Functor } (\text{Nested } ls), \text{Functor } (\text{Nested } ts), \\
\text{ComonadApply } (\text{Nested } ts)) \Rightarrow \\
\text{InsertNested } (\text{Nest } ls l) (\text{Nest } ts t) \text{ where}\\
\text{insertNested } (\text{Nest } l) (\text{Nest } t) = \\
\text{Nest } \$ \text{insertNested } (\text{insertBase } \$ l) (\text{fill } t \text{id}) \$ t
\]

Note that although the above instance uses the fill function to generate a nested structure filled with the identity function, it is not abusing functorial strength in so doing – id is a closed term.

Using some mildly “Hasochistic” type hackery (ala [14]) we can take an nested structure which is not yet Nested – such as a triply-nested list [[[Int]]] – and lift it into a Nested type – such as Nested (Nest (Flat [])) [[[Int]]. The asNestedAs typeclass function has the type
asNestedAs :: NestedAs x y ⇒ x → y → AsNestedAs x y

where the AsNestedAs x y type family invocation describes the type resulting from wrapping x in as many constructors of Nested as are wrapped around y, and the NestedAs typeclass witnesses that this operation is possible. (See Appendix C for a full definition of this function.)

With asNestedAs, we can define an insert function which does not require the inserted thing to be already Nested. This automatic lifting requires knowledge of the type into which we’re inserting values, which means that insert and functions based upon it may require some light type annotation to infer properly.

\[
\begin{align*}
\text{insert} & :: (\text{InsertNested } l t, \text{NestedAs } x (\text{Nested } t a), \hspace{1cm} \text{AsNestedAs } x (\text{Nested } t a) \sim \text{Nested } l a) \Rightarrow \\
& \hspace{1cm} x \rightarrow \text{Nested } t a \rightarrow \text{Nested } t a \\
\text{insert } l t &= \text{insertNested } (\text{asNestedAs } l t) t
\end{align*}
\]

With that in place, we can define the high level interface to our “spreadsheet” library. Borrowing from the nomenclature of spreadsheets, we define two “cell accessor” functions – one for an individual cell and one for a Traversable collection of cells:

\[
\begin{align*}
\text{cell} & :: (\text{Comonad } w, \text{Go } n w) \Rightarrow \text{Coord } n \rightarrow w a \rightarrow a \\
\text{cell} &= (\text{extract } o) \circ \text{go} \\
\text{cells} & :: (\text{Traversable } t, \text{Comonad } w, \text{Go } n w) \Rightarrow \\
& \hspace{1cm} t (\text{Coord } n) \rightarrow w a \rightarrow t a \\
\text{cells} &= \text{traverse cell}
\end{align*}
\]

We may use the sheet function to construct a sheet with a default background into which some other values have been inserted:

\[
\begin{align*}
\text{sheet} & :: (\text{InsertNested } l ts, \hspace{1cm} \text{ComonadApply } (\text{Nested } ts), \text{Applicative } (\text{Nested } ts), \hspace{1cm} \text{NestedAs } x (\text{Nested } ts a), \hspace{1cm} \text{AsNestedAs } x (\text{Nested } ts a) \sim \text{Nested } l a) \Rightarrow \\
& \hspace{1cm} a \rightarrow x \rightarrow \text{Nested } ts a \\
\text{sheet } \text{background list} &= \text{insert list } (\text{pure background})
\end{align*}
\]
Because `sheet` has to invent an entire infinite space of values, we need to rely on `pure` from the `Applicative` class to generate the *background* space into which it may insert its `list` argument. Luckily, `Tapes` are `Applicative`, where $(\otimes) = (\otimes)$ and `pure = tapeOf`, `tapeOf` being a function which generates a `Tape` filled with a single value. This doesn’t mean we can’t build and manipulate “spreadsheets” with non-`Applicative` layers; it merely means we can’t as easily manufacture them *ex nihilo*. The `sheet` function is purely a pleasing convenience, not a necessity.

18 Conclusion: Zippy Comonadic Computations in Infinite n-Dimensional Boxes

The shape of this journey has been from the general to the more specific. By transliterating and composing the axioms of the □ modality, we found a significantly more accurate translation of Löb’s theorem into Haskell, which turned out to embody a maximally efficient fixed point operation over closed comonads. By noticing that closed comonads can compose with the addition of a distributive law, we lifted this new fixed-point into spaces composed of arbitrarily nested comonads. On top of this framework, we layered typeclass instances which perform induction over dimensionality to provide an interpretation for a small domain-specific language of relative references into one family of representable comonads.

Now, where can we go?

To start, we can construct the Fibonacci sequence with optimal memoization using syntax which looks a lot nicer than before.\(^{24}\)

```haskell
fibonacci :: Sheet1 Integer
fibonacci = lfix o sheet 1 $ repeat $ cell (leftBy 2) + cell left
```

\(^{24}\)In this code, we make use of a `Num` instance for functions so that $f + g = \lambda a \to f\ a + g\ a$, and likewise for the other arithmetic operators. These instances may be found in `Data.Numeric.Function`.

34
If we take a peek at it, it’s as we’d expect:

\[
\text{take (rightBy 15) \circ go (leftBy 2) \$ fibonacci} \\
\equiv [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]
\]

Moving up into two dimensions, we can define the infinite grid representing Pascal’s triangle...

\[
pascal :: \text{Sheet2 Integer} \\
pascal = \text{lfix} \circ \text{sheet} 0 \$ \\
\text{repeat} 1 \downarrow \text{repeat} (1 \downarrow \text{pascalRow}) \\
\text{where pascalRow} = \text{repeat} \$ \text{cell above} + \text{cell left}
\]

...which looks like this:

\[
\text{take (belowBy 4 \& rightBy 4) pascal} \\
\equiv [[1, 1, 1, 1], \\
[1, 2, 3, 4, 5], \\
[1, 3, 6, 10, 15], \\
[1, 4, 10, 20, 35], \\
[1, 5, 15, 35, 70]]
\]

Like fibonacci, pascal is efficient: every element is computed at most once.

Conway’s game of life [8] is a nontrivial comonadic computation [5]. We can represent a cell in the life universe as either X (dead) or O (alive):

\[
\text{data Cell = X | O deriving Eq}
\]

More interestingly, we define a Universe as a three-dimensional space where two axes map to the spatial axes of Conway’s game, but the third represents time.

\[
\text{type Universe = Sheet3 Cell}
\]

We can easily parameterize by the “rules of the game” – which neighbor counts trigger cell birth and death, respectively:

25What is typeset here as (\downarrow) is spelled in ASCII Haskell as (<:>), and is defined to be Stream’s Cons constructor in infix form.
type Ruleset = ([Int], [Int])

Computing the evolution of a game from a two-dimensional list of cells “seeding” the system consists of inserting that seed into a “blank” Universe where each cell not part of the seed is defined in terms of the action of the rules upon its previous-timestep neighbors. We can then take this infinite space’s fixed point using lfix.26

\[
\text{lif}e :: \text{Ruleset} \rightarrow [[[\text{Cell}]]] \rightarrow \text{Universe}
\]

\[
\text{lif}e \ \text{ruleset} \ \text{seed} = \\
lfix \ \text{\$ \ insert \ [map \ (map \ \text{const}) \ \text{seed}] \ \text{blank}}
\]

where

\[
\text{blank} = \\
\text{sheet \ (const \ X) \ (repeat \ o \ \text{tapeOf} \ o \ \text{tapeOf} \ \$ \ \text{rule})}
\]

\[
\text{rule \ place} =
\]

\[
\text{case onBoth \ (neighbors \ place \ \in) \ \text{ruleset} \ of}
\]

\[
(\text{True}, _) \rightarrow \text{O}
\]

\[
(_ , \text{True}) \rightarrow \text{cell inward place}
\]

\[
_ \rightarrow X
\]

\[
\text{neighbors} = \text{length} \circ \text{filter} \ (\text{O} \ =>) \circ \ \text{cells \ bordering}
\]

\[
\text{bordering} = \text{map} \ \text{inward} \ (\text{diag} \ + \ \text{vert} \ + \ \text{horz})
\]

\[
\text{diag} = (\&) \ \otimes \ \text{horz} \ \otimes \ \text{vert}
\]

\[
\text{vert} = [\text{above}, \text{below}]
\]

\[
\text{horz} = \text{map} \ \text{to2D} \ [\text{right}, \text{left}]
\]

\[
\text{to2D} = (\text{belowBy} \ 0 \ &)
\]

Conway’s original rules are instantiated by applying the more general life function to their definition:

\[
\text{conway} :: [[[\text{Cell}]]] \rightarrow \text{Sheet3 Cell}
\]

\[
\text{conway} = \text{lif}e \ ([3], [2, 3])
\]

After having defined a simple pretty-printer for Universes (elided here due to space), we can observe the temporal evolution of a glider as it spreads its wings and soars off into infinity.

26In the definition of life, the function onBoth \(f(x, y) = (f \ x, f \ y) \) applies a function to both parts of a pair.
glider :: Sheet3 Cell

\[
glider = conway \begin{bmatrix}
[O, O, O], \\
[X, X, O], \\
[X, O, X]
\end{bmatrix}
\]

\[
\text{printLife} \ glider \equiv \begin{array}{ccc}
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}
\ldots
\]

19 Further Work

I have a strong suspicion that \text{lfix} and the slow possibility from earlier in the paper are extensionally equivalent despite their differing performance. A characterization of the criteria for their equivalence would be useful and enlightening.

In this paper, I focused on a particular set of zipper topologies: \(n \)-dimensional infinite Cartesian grids. Exploring the space of expressible computations with \text{lfix} on more diverse topologies may lend new insight to a variety of dynamic programming algorithms.

I suspect that it is impossible to thread dynamic cycle-detection through \text{lfix} while preserving its performance characteristics and without resorting to unsafe language features. A resolution to this suspicion likely involves work with heterogeneous compositions of monads and comonads. Further, it could be worth exploring how to use unsafe language features to implement dynamic cycle detection in \text{lfix} while still presenting a pure API.

Static cycle detection in \text{lfix}-like recurrences is undecidable in full generality. Nevertheless, we might present a restricted interface within which it is decidable. The interaction between laziness and decidable cyclicity complicates this approach: in general, whether a reference is evaluated depends on arbitrary computation. Other approaches to this problem might include the use of full dependent types or a refinement type system like LiquidHaskell [22].
Acknowledgements

Thank you firstly to my advisor Harry Mairson for his advice and camaraderie. A huge thanks to Dominic Orchard for his help with proof-reading, equational proof techniques, and numerous pieces of clarifying insight. Without Dan Piponi and his fascinating blog, I wouldn’t have even set out on this journey.

Many others have given me ideas, questions, and pointers to great papers; among them are Edward Kmett, Jeremy Gibbons, Tarmo Uustalu, Getty Ritter, Kyle Carter, and Gershom Bazerman. Thanks also to an anonymous reviewer for noticing an important technical point which I’d previously missed.

Finally, thank you to Caleb Marcus, my friend and roommate who has put up with enough comonadic dinner-table conversation to fulfill a lifetime quota, to Eden Zik for standing outside in the cold to talk about spreadsheets, and to Isabel Ballan for reminding me that in the end, it’s usually to do with Wittgenstein.
References

A **Proof:** \(\text{loeb}_{(\rightarrow)} r \equiv \text{fix} \circ \text{flip}\)

\[
\begin{align*}
\text{loeb}_{(\rightarrow)} r &:: (r \to (r \to a) \to a) \to r \to a \\
\text{loeb}_{(\rightarrow)} r &= \lambda f \to \text{fix} (\lambda x \to \text{fmap} (\$ x) f) \\
\quad &\quad \{ \text{fmap}_{(\rightarrow)} r = (\circ) -\} \\
\quad &\equiv \lambda f \to \text{fix} (\lambda x \to (\circ) (\$ x) f) \\
\quad &\quad \{ \text{Inline} (\circ); \beta\text{-reduce}; \text{definition of flip} -\} \\
\quad &\equiv \lambda f \to \text{fix} (\lambda x y \to \text{flip} f x y) \\
\quad &\quad \{ \text{Eta-reduce} -\} \\
\quad &\equiv \text{fix} \circ \text{flip}
\end{align*}
\]

B **Proof:** \(\text{loeb}\) Uses Functorial Strength

\[
\begin{align*}
\text{loeb} &:: \text{Functor } f \Rightarrow f (f a \to a) \to f a \\
\text{loeb } f &= \text{fix} (\lambda x \to \text{fmap} (\$ x) f) \\
\quad &\quad \{ \text{Meaning of section notation -}\} \\
\quad &\equiv \text{fix} (\lambda x \to \text{fmap} (\text{flip} (\$) x) f) \\
\quad &\quad \{ \text{curry/uncurry inverses -}\} \\
\quad &\equiv \text{fix} (\lambda x \to \text{fmap} (\text{uncurry} (\text{flip} (\$)) \circ (,) x) f) \\
\quad &\quad \{ \text{uncurry} (\text{flip} x) \circ (,) y \equiv \text{uncurry} x \circ \text{flip} (,) y -\} \\
\quad &\equiv \text{fix} (\lambda x \to \text{fmap} (\text{uncurry} (\$) \circ \text{flip} (,) x) f) \\
\quad &\quad \{ \text{fmap} (f \circ g) \equiv \text{fmap} f \circ \text{fmap} g \text{ (functor law) -}\} \\
\quad &\equiv \text{fix} (\lambda x \to (\text{fmap} (\text{uncurry} (\$)) \circ \text{fmap} (\text{flip} (,) x)) f) \\
\quad &\quad \{ \text{Inline} \text{flip}; \beta\text{-reduce}; \text{use tuple section notation -}\} \\
\quad &\equiv \text{fix} (\lambda x \to (\text{fmap} (\text{uncurry} (\$)) \circ \text{flex} (, x)) f) \\
\quad &\quad \{ \text{Definition of flex; eta-reduce -}\} \\
\quad &\equiv \text{fix} (\text{fmap} (\text{uncurry} (\$)) \circ \text{flex } f)
\end{align*}
\]
C Full Listing of the Function asNestedAs

type family AddNest \(x\) where
\[
\text{AddNest (Nested } fs \, (f \, x)) = \text{Nested (Nest } fs \, f \, x)
\]

type family AsNestedAs \(x\, y\) where
\[
\text{AsNestedAs } (f \, x) \, (\text{Nested (Flat } g \, b)) = \text{Nested (Flat } f \, x)
\]
\[
\text{AsNestedAs } x\, y = \text{AddNest (AsNestedAs } x \, (\text{UnNest } y))
\]

class NestedAs \(x\, y\) where
\[
\text{asNestedAs } :: x \rightarrow y \rightarrow \text{AsNestedAs } x\, y
\]

instance (AsNestedAs \(f\, a\) \, (\text{Nested (Flat } g \, b))
\[
\sim \, \text{Nested (Flat } f \, a) \Rightarrow
\]
\[
\text{NestedAs } (f \, a) \, (\text{Nested (Flat } g \, b)) \, \text{where}
\]
\[
\text{asNestedAs } x\, _ = \, \text{Flat } x
\]

instance (AsNestedAs \(f\, a\))
\[
(\text{UnNest (Nested (Nest } g \, h) \, b))
\]
\[
\sim \, \text{Nested } fs \, (f' \, a'),
\]
\[
\text{AddNest (Nested } fs \, (f' \, a'))
\]
\[
\sim \, \text{Nested } (\text{Nest } fs \, f') \, a',
\]
\[
\text{NestedAs } (f \, a) \, (\text{UnNest (Nested (Nest } g \, h) \, b)))
\]
\[
\Rightarrow \, \text{NestedAs } (f \, a) \, (\text{Nested (Nest } g \, h) \, b) \, \text{where}
\]
\[
\text{asNestedAs } x\, y = \, \text{Nest (asNestedAs } x \, (\text{unNest } y))
\]